ترغب بنشر مسار تعليمي؟ اضغط هنا

Does the Berry phase in a quantum optical system originate from the rotating wave approximation

339   0   0.0 ( 0 )
 نشر من قبل Jiuqing Liang
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Berry phase (BP) in a quantized light field demonstrated more than a decade ago (Phys. Rev. Lett. 89, 220404) has attracted considerable attentions, since it plays an important role in the cavity quantum electrodynamics. However, it is argued in a recent paper ( Phys. Rev. Lett. 108, 033601) that such a BP is just due to the rotating wave approximation (RWA) and the relevant BP should vanish beyond this approximation. Based on a consistent analysis we conclude in this letter that the BP in a generic Rabi model actually exists, no matter whether the RWA is applied. The existence of BP is also generalized to a three-level atom in the quantized cavity field.

قيم البحث

اقرأ أيضاً

174 - Chris Fleming 2010
We provide an in-depth and thorough treatment of the validity of the rotating-wave approximation (RWA) in an open quantum system. We find that when it is introduced after tracing out the environment, all timescales of the open system are correctly re produced, but the details of the quantum state may not be. The RWA made before the trace is more problematic: it results in incorrect values for environmentally-induced shifts to system frequencies, and the resulting theory has no Markovian limit. We point out that great care must be taken when coupling two open systems together under the RWA. Though the RWA can yield a master equation of Lindblad form similar to what one might get in the Markovian limit with white noise, the master equation for the two coupled systems is not a simple combination of the master equation for each system, as is possible in the Markovian limit. Such a naive combination yields inaccurate dynamics. To obtain the correct master equation for the composite system a proper consideration of the non-Markovian dynamics is required.
We present an analytical method for the two-qubit quantum Rabi model. While still operating in the frame of the generalized rotating-wave approximation (GRWA), our method further embraces the idea of introducing variational parameters. The optimal va lue of the variational parameter is determined by minimizing the energy function of the ground state. Comparing with numerical exact results, we show that our method evidently improves the accuracy of the conventional GRWA in calculating fundamental physical quantities, such as energy spectra, mean photon number, and dynamics. Interestingly, the accuracy of our method allows us to reproduce the asymptotic behavior of mean photon number in large frequency ratio for the ground state and investigate the quasi-periodical structure of the time evolution, which are incapable of being predicted by the GRWA. The applicable parameter ranges cover the ultrastrong coupling regime, which will be helpful to recent experiments.
We present a numerical method to approximate the long-time asymptotic solution $rho_infty(t)$ to the Lindblad master equation for an open quantum system under the influence of an external drive. The proposed scheme uses perturbation theory to rank in dividual drive terms according to their dynamical relevance, and adaptively determines an effective Hamiltonian. In the constructed rotating frame, $rho_infty$ is approximated by a time-independent, nonequilibrium steady-state. This steady-state can be computed with much better numerical efficiency than asymptotic long-time evolution of the system in the lab frame. We illustrate the use of this method by simulating recent transmission measurements of the heavy-fluxonium device, for which ordinary time-dependent simulations are severely challenging due to the presence of metastable states with lifetimes of the order of milliseconds.
The entanglement dynamics of two remote qubits is examined analytically. The qubits interact arbitrarily strongly with separate harmonic oscillators in the idealized degenerate limit of the Jaynes-Cummings Hamiltonian. In contrast to well known non-d egenerate RWA results, it is shown that ideally degenerate qubits cannot induce bipartite entanglement between their partner oscillators.
Two noninteracting atoms, initially entangled in Bell states, are coupled to a one-mode cavity. Based on the reduced non-perturbative quantum master equation, the entanglement evolution of the two atoms with decay is investigated beyond rotating-wave approximation. It is shown that the counter-rotating wave terms have great influence on the disentanglement behavior. The phenomenon of entanglement sudden death and entanglement sudden birth will occur.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا