ﻻ يوجد ملخص باللغة العربية
We provide an in-depth and thorough treatment of the validity of the rotating-wave approximation (RWA) in an open quantum system. We find that when it is introduced after tracing out the environment, all timescales of the open system are correctly reproduced, but the details of the quantum state may not be. The RWA made before the trace is more problematic: it results in incorrect values for environmentally-induced shifts to system frequencies, and the resulting theory has no Markovian limit. We point out that great care must be taken when coupling two open systems together under the RWA. Though the RWA can yield a master equation of Lindblad form similar to what one might get in the Markovian limit with white noise, the master equation for the two coupled systems is not a simple combination of the master equation for each system, as is possible in the Markovian limit. Such a naive combination yields inaccurate dynamics. To obtain the correct master equation for the composite system a proper consideration of the non-Markovian dynamics is required.
We present a numerical method to approximate the long-time asymptotic solution $rho_infty(t)$ to the Lindblad master equation for an open quantum system under the influence of an external drive. The proposed scheme uses perturbation theory to rank in
We briefly examine recent developments in the field of open quantum system theory, devoted to the introduction of a satisfactory notion of memory for a quantum dynamics. In particular, we will consider a possible formalization of the notion of non-Ma
The Berry phase (BP) in a quantized light field demonstrated more than a decade ago (Phys. Rev. Lett. 89, 220404) has attracted considerable attentions, since it plays an important role in the cavity quantum electrodynamics. However, it is argued in
The entanglement dynamics of two remote qubits is examined analytically. The qubits interact arbitrarily strongly with separate harmonic oscillators in the idealized degenerate limit of the Jaynes-Cummings Hamiltonian. In contrast to well known non-d
The effect of the anti-rotating terms on the short-time evolution and the quantum Zeno (QZE) and anti-Zeno (AQZE) effects is studied for a two-level system coupled to a bosonic environment. A unitary transformation and perturbation theory are used to