ﻻ يوجد ملخص باللغة العربية
The easily tuned balance among competing interactions in Kondo-lattice metals allows access to a zero-temperature, continuous transition between magnetically ordered and disordered phases, a quantum-critical point (QCP). Indeed, these highly correlated electron materials are prototypes for discovering and exploring quantum-critical states. Theoretical models proposed to account for the strange thermodynamic and electrical transport properties that emerge around the QCP of a Kondo lattice assume the presence of an indefinitely large number of itinerant charge carriers. Here, we report a systematic transport and thermodynamic investigation of the Kondo-lattice system CeNi$_{2-delta}$As$_2$ ($delta$$thickapprox$0.28) as its antiferromagnetic order is tuned by pressure and magnetic field to zero-temperature boundaries. These experiments show that the very small but finite carrier density of $sim$0.032 $e^-$/f.u. in CeNi$_{2-delta}$As$_2$ leads to unexpected transport signatures of quantum criticality and the delayed development of a fully coherent Kondo lattice state with decreasing temperature. The small carrier density and associated semi-metallicity of this Kondo-lattice material favor an unconventional, local-moment type of quantum criticality and raise the specter of Nozi`{e}res exhaustion idea that an insufficient number of conduction-electron spins to separately screen local moments requires collective Kondo screening.
Kondo insulators are predicted to undergo an insulator-to-metal transition under applied magnetic field, yet the extremely high fields required to date have prohibited a comprehensive investigation of the nature of this transition. Here we show that
We have studied the effect of pressure on the pyrochlore iridate Eu$_2$Ir$_2$O$_7$, which at ambient pressure has a thermally driven insulator to metal transition at $T_{MI}sim120$,K. As a function of pressure the insulating gap closes, apparently co
There has been considerable interest in topological semi-metals that exhibit extreme magnetoresistance (XMR). These have included materials lacking inversion symmetry such as TaAs, as well Dirac semi-metals such as Cd3As2. However, it was reported re
The observation of quantum criticality in diverse classes of strongly correlated electron systems has been instrumental in establishing ordering principles, discovering new phases, and identifying the relevant degrees of freedom and interactions. At
BaMn$_{2}$As$_{2}$ is an antiferromagnetic insulator where a metal-insulator transition occurs with hole doping via the substitution of Ba with K. The metal-insulator transition causes only a small suppression of the Neel temperature ($T_mathrm{N}$)