ترغب بنشر مسار تعليمي؟ اضغط هنا

Pressure Tuned Insulator to Metal Transition in Eu$_2$Ir$_2$O$_7$

94   0   0.0 ( 0 )
 نشر من قبل Fazel Tafti
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have studied the effect of pressure on the pyrochlore iridate Eu$_2$Ir$_2$O$_7$, which at ambient pressure has a thermally driven insulator to metal transition at $T_{MI}sim120$,K. As a function of pressure the insulating gap closes, apparently continuously, near $P sim 6$,GPa. However, rather than $T_{MI}$ going to zero as expected, the insulating ground state crosses over to a metallic state with a negative temperature coefficient of resistivity, calling into question the true nature of both ground states. The high temperature state also crosses over near 6 GPa, from an incoherent to a conventional metal, suggesting a connection between the high and the low temperature states.

قيم البحث

اقرأ أيضاً

In this study, we performed powder neutron diffraction and inelastic scattering measurements of frustrated pyrochlore Nd$_2$Ir$_2$O$_7$, which exhibits a metal-insulator transition at a temperature $T_{rm MI}$ of 33 K. The diffraction measurements re vealed that the pyrochlore has an antiferromagnetic long-range structure with propagation vector $vec{q}_{0}$ of (0,0,0) and that it grows with decreasing temperature below 15 K. This structure was analyzed to be of the all-in all-out type, consisting of highly anisotropic Nd$^{3+}$ magnetic moments of magnitude $2.3pm0.4$$mu_{rm B}$, where $mu_{rm B}$ is the Bohr magneton. The inelastic scattering measurements revealed that the Kramers ground doublet of Nd$^{3+}$ splits below $T_{rm MI}$. This suggests the appearance of a static internal magnetic field at the Nd sites, which probably originates from a magnetic order consisting of Ir$^{4+}$ magnetic moments. Here, we discuss a magnetic structure model for the Ir order and the relation of the order to the metal-insulator transition in terms of frustration.
We report temperature-dependent Raman scattering and X-ray diffraction studies of pyrochlore iridates, (Eu$_{1-x}$Bi$_x$)$_2$Ir$_2$O$_7$, for x=0, 0.02, 0.035, 0.05 and 0.1. The temperature variation in Raman experiments spans from 4 K to 300 K, cove ring the metal-insulator phase transition accompanied by paramagnetic to all-in/all-out (AIAO) spin ordering (T$_N$). These systems also show a Weyl semi-metal (WSM) phase at low temperatures (below ~50 K). We show that the Ir-O-Ir bond bending mode, A$_{1g}$ (510 cm$^{-1}$), shows anomalous softening in the magnetically ordered AIAO state, arising primarily from the spin-phonon interaction due to the phonon-modulation of the Dzyaloshinskii-Moriya (DM) spin-exchange interaction. The two stretching modes, T$_{2g}^1$ (307 cm$^{-1}$) and T$_{2g}^2$ (382 cm$^{-1}$) harden significantly in the magnetic insulating phase. The T$_{2g}$ phonons also show anomalous temperature dependence of their mode frequencies, hitherto unreported, due to strong electron-phonon coupling. The signatures of the WSM state are observed in phonon renormalization below 50 K due to strong electron-phonon interaction. Our experimental results establish strong magneto-elastic coupling below T$_N$ and significant electron-phonon interactions in the metallic phase above T$_N$ as well as in the low-temperature WSM state.
The interplay between electronic interactions and strong spin-orbit coupling is expected to create a plethora of fascinating correlated topological states of quantum matter. Of particular interest are magnetic Weyl semimetals originally proposed in t he pyrochlore iridates, which are only expected to reveal their topological nature in thin film form. To date, however, direct experimental demonstrations of these exotic phases remain elusive, due to the lack of usable single crystals and the insufficient quality of available films. Here, we report on the discovery of the long-sought magnetic Weyl semi-metallic phase in (111)-oriented Eu$_2$Ir$_2$O$_7$ high-quality epitaxial thin films. The topological magnetic state shows an intrinsic anomalous Hall effect with colossal coercivity but vanishing net magnetization, which emerges below the onset of a peculiar magnetic phase with all-in-all-out antiferromagnetic ordering. The observed anomalous Hall conductivity arises from the non-zero Berry curvature emanated by Weyl node pairs near the Fermi level that act as sources and sinks of Berry flux, activated by broken cubic crystal symmetry at the top and bottom terminations of the thin film.
We study the pyrochlore series (Eu$_{1-x}$Bi$_x$)$_2$Ir$_2$O$_7$ for $ 0 leq x leq 1$. We show that for small $x$, the lattice undergoes an anomalous contraction but the all-in/all-out and metal-to-insulator transitions remain robust, and the resisti vity approaches a $1/T$ dependence at low-T, suggesting proximity to the Weyl semimetallic phase, as previously predicted theoretically. At the boundary between Eu$_2$Ir$_2$O$_7$ and Bi$_2$Ir$_2$O$_7$ a qualitatively different ground state emerges, which is characterized by its unusual metallic behavior and absence of magnetic ordering at least down to $0.02$ K.
High-resolution resonant inelastic x-ray scattering (RIXS) measurements ($Delta$E = 46 meV) have been performed on Cd$_2$Os$_2$O$_7$ through the metal-to-insulator transition (MIT). A magnetic excitation at 125 meV evolves continuously through the MI T, in agreement with recent Raman scattering results, and provides further confirmation for an all-in, all-out magnetic ground state. Asymmetry of this feature is likely a result of coupling between the electronic and magnetic degrees of freedom. We also observe a broad continuum of interband excitations centered at 0.3 eV energy loss. This is indicative of significant hybridization between Os 5$d$ and O 2$p$ states, and concurrent itinerant nature of the system. In turn, this suggests a possible break down of the free-ion model for Cd$_2$Os$_2$O$_7$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا