ﻻ يوجد ملخص باللغة العربية
Kondo insulators are predicted to undergo an insulator-to-metal transition under applied magnetic field, yet the extremely high fields required to date have prohibited a comprehensive investigation of the nature of this transition. Here we show that Ce3Bi4Pd3 provides an ideal platform for this investigation, owing to the unusually small magnetic field of B ~ 11 T required to overcome its Kondo insulating gap. Above Bc, we find a magnetic field-induced Fermi liquid state whose characteristic energy scale T_FL collapses near Bc in a manner indicative of a magnetic field-tuned quantum critical point. A direct connection is established with the process of Kondo singlet formation, which yields a broad maximum in the magnetic susceptibility as a function of temperature in weak magnetic fields that evolves progressively into a sharper transition at Bc as T -> 0.
We examine the exchange Hamiltonian for magnetic adatoms in graphene with localized inner shell states. On symmetry grounds, we predict the existence of a class of orbitals that lead to a distinct class of quantum critical points in graphene, where t
Electronic nematics are exotic states of matter where electronic interactions break a rotational symmetry of the underlying lattice, in analogy to the directional alignment without translational order in nematic liquid crystals. Intriguingly such pha
The observation of quantum criticality in diverse classes of strongly correlated electron systems has been instrumental in establishing ordering principles, discovering new phases, and identifying the relevant degrees of freedom and interactions. At
The easily tuned balance among competing interactions in Kondo-lattice metals allows access to a zero-temperature, continuous transition between magnetically ordered and disordered phases, a quantum-critical point (QCP). Indeed, these highly correlat
The effects of reduced dimensions and the interfaces on antiferromagnetic quantum criticality are studied in epitaxial Kondo superlattices, with alternating $n$ layers of heavy-fermion antiferromagnet CeRhIn$_5$ and 7 layers of normal metal YbRhIn$_5