ترغب بنشر مسار تعليمي؟ اضغط هنا

Large magnetoresistance in the antiferromagnetic semi-metal NdSb

83   0   0.0 ( 0 )
 نشر من قبل Nicholas Wakeham
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

There has been considerable interest in topological semi-metals that exhibit extreme magnetoresistance (XMR). These have included materials lacking inversion symmetry such as TaAs, as well Dirac semi-metals such as Cd3As2. However, it was reported recently that LaSb and LaBi also exhibit XMR, even though the rock-salt structure of these materials has inversion symmetry, and the band-structure calculations do not show a Dirac dispersion in the bulk. Here, we present magnetoresistance and specific heat measurements on NdSb, which is isostructural with LaSb. NdSb has an antiferromagnetic groundstate, and in analogy with the lanthanum monopnictides, is expected to be a topologically non-trivial semi-metal. We show that NdSb has an XMR of 10^4 %, even within the AFM state, illustrating that XMR can occur independently of the absence of time reversal symmetry breaking in zero magnetic field. The persistence of XMR in a magnetic system offers promise of new functionality when combining topological matter with electronic correlations. We also find that in an applied magnetic field below the Neel temperature there is a first order transition, consistent with evidence from previous neutron scattering work.

قيم البحث

اقرأ أيضاً

The extremely large magnetoresistance (XMR) observed in many topologically nontrivial and trivial semimetals has attracted much attention in relation to its underlying physical mechanism. In this paper, by combining the band structure and Fermi surfa ce (FS) calculations with the Hall resistivity and de Haas-Van Alphen (dHvA) oscillation measurements, we studied the anisotropy of magnetoresistance (MR) of ReO$_3$ with a simple cubic structure, an ordinary nonmagnetic metal considered previously. We found that ReO$_3$ exhibits almost all the characteristics of XMR semimetals: the nearly quadratic field dependence of MR, a field-induced upturn in resistivity followed by a plateau at low temperatures, high mobilities of charge carriers. It was found that for magnetic field emph{H} applied along the emph{c} axis, the MR exhibits an unsaturated emph{H}$^{1.75}$ dependence, which was argued to arise from the complete carrier compensation supported by the Hall resistivity measurements. For emph{H} applied along the direction of 15$^circ$ relative to the emph{c} axis, an unsaturated emph{H}$^{1.90}$ dependence of MR up to 9.43~$times$~$10^3$$%$ at 10~K and 9~T was observed, which was explained by the existence of electron open orbits extending along the $k_{x}$ direction. Two mechanisms responsible for XMR observed usually in the semimetals occur also in the simple metal ReO$_3$ due to its peculiar FS (two closed electron pockets and one open electron pocket), once again indicating that the details of FS topology are a key factor for the observed XMR in materials.
281 - W. Xie , Y. Wu , F. Du 2019
A number of rare-earth monopnictides have topologically non-trivial band structures together with magnetism and strong electronic correlations. In order to examine whether the antiferromagnetic (AFM) semimetal YbAs ($Trm_N$ = 0.5 K) exhibits such a s cenario, we have grown high-quality single crystals using a flux method, and characterized the magnetic properties and electronic structure using specific heat, magnetotransport and angle-resolved photoemission spectroscopy (ARPES) measurements, together with density functional theory (DFT) calculations. Both ARPES and DFT calculations find no evidence for band
The band structure of high carrier density metal CrP features an interesting crossing at the Y point of the Brillouin zone. The crossing, which is protected by the nonsymmorphic symmetry of the space group, results in a hybrid, semi-Dirac-like energy -momentum dispersion relation near Y. The linear energy-momentum dispersion relation along Y-$Gamma$ is reminiscent of the observed band structure in several semimetallic extremely large magnetoresistance (XMR) materials. We have measured the transverse magnetoresistance of CrP up to 14 T at temperatures as low as $sim$ 16 mK. Our data reveal a nonsaturating, quadratic magnetoresistance as well as the behaviour of the so-called `turn-on temperature in the temperature dependence of resistivity. Despite the difference in the magnitude of the magnetoresistance and the fact that CrP is not a semimetal, these features are qualitatively similar to the observations reported for XMR materials. Thus, the high-field electrical transport studies of CrP offer the prospect of identifying the possible origin of the nonsaturating, quadratic magnetoresistance observed in a wide range of metals.
106 - X. Z. Xing , C. Q. Xu , N. Zhou 2017
Materials exhibiting large magnetoresistance may not only be of fundamental research interest, but also can lead to wide-ranging applications in magnetic sensors and switches. Here we demonstrate a large linear-in-field magnetoresistance, $Delta rho/ rho$ reaching as high as $sim$600$%$ at 2 K under a 9 Tesla field, in the tetragonal phase of a transiton-metal stannide $beta$-RhSn$_4$. Detailed analyses show that its magnetic responses are overall inconsistent with the classical model based on the multiple electron scattering by mobility fluctuations in an inhomogenous conductor, but rather in line with the quantum effects due to the presence of Dirac-like dispersions in the electronic structure. Our results may help guiding the future quest for quantum magnetoresistive materials into the family of stannides, similar to the role played by PtSn$_4$ with topological node arcs.
The transport and thermodynamic properties of $beta$-ReO$_{2}$ crystallizing in a nonsymmorphic structure were studied using high-quality single crystals. An extremely large magnetoresistance (XMR) reaching 22,000 $%$ in a transverse magnetic field o f 10 T at 2 K was observed. However, distinguished from other topological semimetals with low carrier densities that show XMR, $beta$-ReO$_{2}$ has a high electron carrier density of 1 $times$ $10^{22}$ cm$^{-3}$ as determined by Hall measurements and large Fermi surfaces in the electronic structure. In addition, a small Fermi surface with a small effective mass was evidenced by de Haas-van Alphen oscillation measurements. The previous band structure calculations [S. S. Wang, et al., Nat. Commun. 8, 1844 (2017)] showed that two kinds of loops made of Dirac points of hourglass-shaped dispersions exist and are connected to each other by a point to form a string of alternating loops, called the Dirac loop chain (DLC), which are protected by the multiple glide symmetries. Our first-principles calculations revealed the complex Fermi surfaces with the smallest one corresponding to the observed small Fermi surface, which is just located near the DLC. The XMR of $beta$-ReO$_{2}$ is attributed to the small Fermi surface and thus is likely caused by the DLC.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا