ترغب بنشر مسار تعليمي؟ اضغط هنا

The Helium Abundance in the Ejecta of U Scorpii

184   0   0.0 ( 0 )
 نشر من قبل Michael Maxwell
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

U Scorpii is a recurrent nova which has been observed in outburst on 10 occasions, most recently in 2010. We present near-infrared and optical spectroscopy of the 2010 outburst of U Sco. The reddening of U Sco is found to be $E(B-V) = 0.14pm0.12$, consistent with previous determinations, from simultaneous optical and near-IR observations. The spectra show the evolution of the line widths and profiles to be consistent with previous outbursts. Velocities are found to be up to 14000,kms$^{-1}$ in broad components and up to 1800,kms$^{-1}$ in narrow line components, which become visible around day 8 due to changes in the optical depth. From the spectra we derive a helium abundance of $N$(He)/$N$(H)$ = 0.073pm0.031$ from the most reliable lines available; this is lower than most other estimates and indicates that the secondary is not helium-rich, as previous studies have suggested.



قيم البحث

اقرأ أيضاً

110 - M. P. Maxwell , M. T. Rushton , 2013
VLT and SALT spectroscopy of U Sco were obtained $sim$18 and $sim$30 months after the 2010 outburst. From these spectra the accretion disc is shown to take at least 18 months to become fully reformed. The spectral class of the companion is constraine d to be F8$^{+5}_{-6}$,IV-V at the 95% confidence level when the irradiated face of the companion is visible.
391 - Masayuki Yamanaka 2010
We present early spectroscopy of the recurrent nova U~Sco during the outburst in 2010. We successfully obtained time-series spectra at $t_{rm d}=$0.37--0.44~d, where $t_{rm d}$ denotes the time from the discovery of the present outburst. This is the first time-resolved spectroscopy on the first night of U Sco outbursts. At $t_{rm d}sim 0.4$~d the H$alpha$ line consists of a blue-shifted ($-5000$ km s$^{-1}$) narrow absorption component and a wide emission component having triple peaks, a blue ($sim -3000$ km s$^{-1}$), a central ($sim 0$ km s$^{-1}$) and a red ($sim +3000$ km s$^{-1}$) ones. The blue and red peaks developed more rapidly than the central one during the first night. This rapid variation would be caused by the growth of aspherical wind produced during the earliest stage of the outburst. At $t_{rm d}=1.4$~d the H$alpha$ line has a nearly flat-topped profile with weak blue and red peaks at $sim pm 3000$ km s$^{-1}$. This profile can be attributed to a nearly spherical shell, while the asphericity growing on the first night still remains. The wind asphericity is less significant after $t_{rm d}=9$ d.
118 - H. Naito , A. Tajitsu , A. Arai 2012
We report the discovery of blue-shifted metastable He I* absorption lines at 3188 A and 3889 A with multiple components on high-resolution spectra (R ~ 60,000) of V1280 Scorpii. Similar multiple absorption lines associated with Na I D doublet and Ca II H and K are observed. Na I D doublet absorption lines have been observed since 2009, while the metastable He I* absorption lines were absent in 2009 and were detected in 2011 (four years after the burst). We find different time variations in depths and velocities of blue-shifted absorption components among He I*, Na I, and Ca II. The complex time evolutions of these lines can be explained by assuming changes in density and recombination/ionization rate when the ejecta expand and the photosphere contracts to become hotter. The multiple absorption lines originate in the ejected materials consisting of clumpy components, which obscure a significant part of the continuum emitting region. We estimate the total mass of the ejected material to be on the order of ~ 10^{-4} Mo, using metastable He I* 3188 and 3889 absorption lines.
The eruption of the recurrent nova U Scorpii on 28 January 2010 is now the all-time best observed nova event. We report 36,776 magnitudes throughout its 67 day eruption, for an average of one measure every 2.6 minutes. This unique and unprecedented c overage is the first time that a nova has any substantial amount of fast photometry. With this, two new phenomena have been discovered: the fast flares in the early light curve seen from days 9-15 (which have no proposed explanation) and the optical dips seen out of eclipse from days 41-61 (likely caused by raised rims of the accretion disk occulting the bright inner regions of the disk as seen over specific orbital phases). The expanding shell and wind cleared enough from days 12-15 so that the inner binary system became visible, resulting in the sudden onset of eclipses and the turn-on of the supersoft X-ray source. On day 15, a strong asymmetry in the out-of-eclipse light points to the existence of the accretion stream. The normal optical flickering restarts on day 24.5. For days 15-26, eclipse mapping shows that the optical source is spherically symmetric with a radius of 4.1 R_sun. For days 26-41, the optical light is coming from a rim-bright disk of radius 3.4 R_sun. For days 41-67, the optical source is a center-bright disk of radius 2.2 R_sun. Throughout the eruption, the colors remain essentially constant. We present 12 eclipse times during eruption plus five just after the eruption.
We present near-IR observations of the 2010 outburst of U Sco. JHK photometry is presented on ten consecutive days starting from 0.59 days after outburst. Such photometry can gainfully be integrated into a larger database of other multi-wavelength da ta which aim to comprehensively study the evolution of U Sco. Early near-IR spectra, starting from 0.56 days after outburst, are presented and their general characteristics discussed. Early in the eruption, we see very broad wings in several spectral lines, with tails extending up to ~10000km/s along the line of sight; it is unexpected to have a nova with ejection velocities equal to those usually thought to be exclusive to supernovae. From recombination analysis, we estimate an upper limit of 10^-4.64[+0.92.-0.74]Msun for the ejected mass.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا