ﻻ يوجد ملخص باللغة العربية
We study the development of coherent structures in local simulations of the magnetorotational instability in accretion discs in regimes of on-off intermittency. In a previous paper [Chian et al., Phys. Rev. Lett. 104, 254102 (2010)], we have shown that the laminar and bursty states due to the on-off spatiotemporal intermittency in a one-dimensional model of nonlinear waves correspond, respectively, to nonattracting coherent structures with higher and lower degrees of amplitude-phase synchronization. In this paper we extend these results to a three-dimensional model of magnetized Keplerian shear flows. Keeping the kinetic Reynolds number and the magnetic Prandtl number fixed, we investigate two different intermittent regimes by varying the plasma beta parameter. The first regime is characterized by turbulent patterns interrupted by the recurrent emergence of a large-scale coherent structure known as two-channel flow, where the state of the system can be described by a single Fourier mode. The second regime is dominated by the turbulence with sporadic emergence of coherent structures with shapes that are reminiscent of a perturbed channel flow. By computing the Fourier power and phase spectral entropies in three-dimensions, we show that the large-scale coherent structures are characterized by a high degree of amplitude-phase synchronization.
For generic systems exhibiting power law behaviors, and hence multiscale dependencies, we propose a new, and yet simple, tool to analyze multifractality and intermittency, after noticing that these concepts are directly related to the deformation of
The Refined Kolmogorov Similarity Hypothesis is a valuable tool for the description of intermittency in isotropic conditions. For flows in presence of a substantial mean shear, the nature of intermittency changes since the process of energy transfer
Hilbert-Huang transform is a method that has been introduced recently to decompose nonlinear, nonstationary time series into a sum of different modes, each one having a characteristic frequency. Here we show the first successful application of this a
We consider mean-field dynamo models with fluctuating alpha effect, both with and without shear. The alpha effect is chosen to be Gaussian white noise with zero mean and given covariance. We show analytically that the mean magnetic field does not gro
The shear-induced reversible self-organization of active rotors into strip-like aggregates is studied by carrying out computational simulations. The numerical and theoretical results demonstrate that the average width of the strips is linearly depend