ترغب بنشر مسار تعليمي؟ اضغط هنا

An amplitude-frequency study of turbulent scaling intermittency using Empirical Mode Decomposition and Hilbert Spectral Analysis

95   0   0.0 ( 0 )
 نشر من قبل Yongxiang Huang
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Hilbert-Huang transform is a method that has been introduced recently to decompose nonlinear, nonstationary time series into a sum of different modes, each one having a characteristic frequency. Here we show the first successful application of this approach to homogeneous turbulence time series. We associate each mode to dissipation, inertial range and integral scales. We then generalize this approach in order to characterize the scaling intermittency of turbulence in the inertial range, in an amplitude-frequency space. The new method is first validated using fractional Brownian motion simulations. We then obtain a 2D amplitude-frequency representation of the pdf of turbulent fluctuations with a scaling trend, and we show how multifractal exponents can be retrieved using this approach. We also find that the log-Poisson distribution fits the velocity amplitude pdf better than the lognormal distribution.

قيم البحث

اقرأ أيضاً

High-spatial-resolution (HSR) two-component, two-dimensional particle-image-velocimetry (2C-2D PIV) measurements of a zero-pressure-gradient (ZPG) turbulent boundary layer (TBL) and an adverse-pressure-gradient (APG)-TBL were taken in the LMFL High R eynolds number Boundary Layer Wind Tunnel. The ZPG-TBL has a momentum-thickness based Reynolds number $Re_{delta_2} = delta_2 U_e/ u = 7,750$ while the APG-TBL has a $Re_{delta_2} = 16,240$ and a Clausers pressure gradient parameter $beta = delta_1 P_x/tau_w = 2.27$ After analysing the single-exposed PIV image data using a multigrid/multipass digital PIV (Soria, 1996) with in-house software, proper orthogonal decomposition (POD) was performed on the data to separate flow-fields into large- and small-scale motions (LSMs and SSMs), with the LSMs further categorized into high- and low-momentum events. Profiles of the conditionally averaged Reynolds stresses show that the high-momentum events contribute more to the Reynolds stresses than the low-momentum between wall to the end of the log-layer and the opposite is the case in the wake region. The cross-over point of the profiles of the Reynolds stresses from the high- and low-momentum LSMs always has a higher value than the corresponding Reynolds stress from the original ensemble at the same wall-normal location. Furthermore, the cross-over point in the APG-TBL moves further from the wall than in the ZPG-TBL. By removing the velocity fields with LSMs, the estimate of the Reynolds streamwise stress and Reynolds shear stress from the remaining velocity fields is reduced by up to $42 %$ in the ZPG-TBL. The reduction effect is observed to be even larger (up to $50%$) in the APG-TBL. However, the removal of these LSMs has a minimal effect on the Reynolds wall-normal stress in both the ZPG- and APG-TBL.
This study concerns wavepackets in laminar turbulent transition in a Blasius boundary layer. While initial amplitude and frequency have well-recognized roles in the transition process, the current study on the combined effects of amplitude, frequency , and bandwidth on the propagation of wavepackets is believed to be new. Because of the complexity of the system, these joint variations in multiple parameters could give rise to effects not seen through the variation of any single parameter. Direct numerical simulations (DNS) are utilized in a full factorial (fully crossed) design to investigate both individual and joint effects of variation in the simulation parameters, with a special focus on three distinct variants of wavepacket transition {textemdash} the reverse Craik triad formation sequence, concurrent N-type and K-type transition and abrupt shifts in dominant frequency. From our factorial study, we can summarize the key transition trends of wavepackets as follows: 1. Broad bandwidth wavepackets predominantly transit to turbulence via the N-route. This tendency remains strong even as the frequency width is reduced. 2. Narrow bandwidth wavetrains exhibit predominantly K-type transition. The front broadband part of an emerging wavetrain may experience N-type transition, but this wavefront should not be considered as a part of truly narrow-bandwidth wavepackets. 3. K-type transition is the most likely for wavepackets that are initiated with high energy/amplitude and/or with the peak frequency at the lower branch of the neutral stability curve.
69 - J. Bec , L. Biferale , M. Cencini 2009
The statistics of velocity differences between very heavy inertial particles suspended in an incompressible turbulent flow is found to be extremely intermittent. When particles are separated by distances within the viscous subrange, the competition b etween quiet regular regions and multi-valued caustics leads to a quasi bi-fractal behavior of the particle velocity structure functions, with high-order moments bringing the statistical signature of caustics. Contrastingly, for particles separated by inertial-range distances, the velocity-difference statistics is characterized in terms of a local H{o}lder exponent, which is a function of the scale-dependent particle Stokes number only. Results are supported by high-resolution direct numerical simulations. It is argued that these findings might have implications in the early stage of rain droplets formation in warm clouds.
67 - Andre Fuchs 2021
The physical processes leading to anomalous fluctuations in turbulent flows, referred to as intermittency, are still challenging. Here, we use an approach based on instanton theory for the velocity increment dynamics through scales. Cascade trajector ies with negative stochastic thermodynamics entropy exchange values lead to anomalous increments at small-scales. These trajectories concentrate around an instanton, which is the minimum of an effective action produced by turbulent fluctuations. The connection between entropy from stochastic thermodynamics and the related instanton provides a new perspective on the cascade process and the intermittency phenomenon.
We study the development of coherent structures in local simulations of the magnetorotational instability in accretion discs in regimes of on-off intermittency. In a previous paper [Chian et al., Phys. Rev. Lett. 104, 254102 (2010)], we have shown th at the laminar and bursty states due to the on-off spatiotemporal intermittency in a one-dimensional model of nonlinear waves correspond, respectively, to nonattracting coherent structures with higher and lower degrees of amplitude-phase synchronization. In this paper we extend these results to a three-dimensional model of magnetized Keplerian shear flows. Keeping the kinetic Reynolds number and the magnetic Prandtl number fixed, we investigate two different intermittent regimes by varying the plasma beta parameter. The first regime is characterized by turbulent patterns interrupted by the recurrent emergence of a large-scale coherent structure known as two-channel flow, where the state of the system can be described by a single Fourier mode. The second regime is dominated by the turbulence with sporadic emergence of coherent structures with shapes that are reminiscent of a perturbed channel flow. By computing the Fourier power and phase spectral entropies in three-dimensions, we show that the large-scale coherent structures are characterized by a high degree of amplitude-phase synchronization.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا