ﻻ يوجد ملخص باللغة العربية
We consider mean-field dynamo models with fluctuating alpha effect, both with and without shear. The alpha effect is chosen to be Gaussian white noise with zero mean and given covariance. We show analytically that the mean magnetic field does not grow, but, in an infinitely large domain, the mean-squared magnetic field shows exponential growth of the fastest growing mode at a rate proportional to the shear rate, which agrees with earlier numerical results of Yousef et al (2008) and recent analytical treatment by Heinemann et al (2011) who use a method different from ours. In the absence of shear, an incoherent alpha^2 dynamo may also be possible. We further show by explicit calculation of the growth rate of third and fourth order moments of the magnetic field that the probability density function of the mean magnetic field generated by this dynamo is non-Gaussian.
In this paper we discuss the dynamical features of intermittent fluctuations in homogeneous shear flow turbulence. In this flow the energy cascade is strongly modified by the production of turbulent kinetic energy related to the presence of vortical
The Refined Kolmogorov Similarity Hypothesis is a valuable tool for the description of intermittency in isotropic conditions. For flows in presence of a substantial mean shear, the nature of intermittency changes since the process of energy transfer
A quasi-linear theory is presented for how randomly forced, barotropic velocity fluctuations cause an exponentially-growing, large-scale (mean) magnetic dynamo in the presence of a uniform shear flow, $vec{U} = S x vec{e}_y$. It is a kinematic theory
We study the development of coherent structures in local simulations of the magnetorotational instability in accretion discs in regimes of on-off intermittency. In a previous paper [Chian et al., Phys. Rev. Lett. 104, 254102 (2010)], we have shown th
Via amplification by turbulent dynamo, magnetic fields can be potentially important for the formation of the first stars. To examine the dynamo behavior during the gravitational collapse of primordial gas, we extend the theory of nonlinear turbulent