ترغب بنشر مسار تعليمي؟ اضغط هنا

Emergent Stripes of Active Rotors in Shear Flows

158   0   0.0 ( 0 )
 نشر من قبل Ryohei Seto
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The shear-induced reversible self-organization of active rotors into strip-like aggregates is studied by carrying out computational simulations. The numerical and theoretical results demonstrate that the average width of the strips is linearly dependent on the relative intensity of active torque to the shear rate of the imposed flow. In the particle strips, edge flows are observed to be against the imposed flow and play a crucial role to maintain the stability of the strips. Additionally, the rheological result shows the dependence of shear and rotational viscosities on the active torque direction and the oddness of normal stress response. By exhibiting a novel collective phenomenon of active rotors, our study paves the way of understanding the chiral active matter.



قيم البحث

اقرأ أيضاً

Dense suspensions are non-Newtonian fluids which exhibit strong shear thickening and normal stress differences. Using numerical simulation of extensional and shear flows, we investigate how rheological properties are determined by the microstructure which is built under flows and by the interactions between particles. By imposing extensional and shear flows, we can assess the degree of flow-type dependence in regimes below and above thickening. Even when the flow-type dependence is hindered, nondissipative responses, such as normal stress differences, are present and characterise the non-Newtonian behaviour of dense suspensions.
Nearly all dense suspensions undergo dramatic and abrupt thickening transitions in their flow behavior when sheared at high stresses. Such transitions occur when the dominant interactions between the suspended particles shift from hydrodynamic to fri ctional. Here, we interpret abrupt shear thickening as a precursor to a rigidity transition, and give a complete theory of the viscosity in terms of a universal crossover scaling function from the frictionless jamming point to a rigidity transition associated with friction, anisotropy, and shear. Strikingly, we find experimentally that for two different systems -- cornstarch in glycerol and silica spheres in glycerol -- the viscosity can be collapsed onto a single universal curve over a wide range of stresses and volume fractions. The collapse reveals two separate scaling regimes, due to a crossover between frictionless isotropic jamming and a frictional shear jamming point with different critical exponents. The material-specific behavior due to the microscale particle interactions is incorporated into an additive analytic background (given by the viscosity at low shear rates) and a scaling variable governing the proximity to shear jamming that depends on both stress and volume fraction. This reformulation opens the door to importing the vast theoretical machinery developed to understand equilibrium critical phenomena to elucidate fundamental physical aspects of the shear thickening transition.
The phenomenon of shear-induced jamming is a factor in the complex rheological behavior of dense suspensions. Such shear-jammed states are fragile, i.e., they are not stable against applied stresses that are incompatible with the stress imposed to cr eate them. This peculiar flow-history dependence of the stress response is due to flow-induced microstructures. To examine jammed states realized under constant shear stress, we perform dynamic simulations of non-Brownian particles with frictional contact forces and hydrodynamic lubrication forces. We find clear signatures that distinguish these fragile states from the more conventional isotropic jammed states.
Dense emulsions, colloidal gels, microgels, and foams all display a solid-like behavior at rest characterized by a yield stress, above which the material flows like a liquid. Such a fluidization transition often consists of long-lasting transient flo ws that involve shear-banded velocity profiles. The characteristic time for full fluidization, $tau_text{f}$, has been reported to decay as a power-law of the shear rate $dot gamma$ and of the shear stress $sigma$ with respective exponents $alpha$ and $beta$. Strikingly, the ratio of these exponents was empirically observed to coincide with the exponent of the Herschel-Bulkley law that describes the steady-state flow behavior of these complex fluids. Here we introduce a continuum model, based on the minimization of a free energy, that captures quantitatively all the salient features associated with such textit{transient} shear-banding. More generally, our results provide a unified theoretical framework for describing the yielding transition and the steady-state flow properties of yield stress fluids.
Collective behaviour in suspensions of microswimmers is often dominated by the impact of long-ranged hydrodynamic interactions. These phenomena include active turbulence, where suspensions of pusher bacteria at sufficient densities exhibit large-scal e, chaotic flows. To study this collective phenomenon, we use large-scale (up to $N=3times 10^6$) particle-resolved lattice Boltzmann simulations of model microswimmers described by extended stresslets. Such system sizes enable us to obtain quantitative information about both the transition to active turbulence and characteristic features of the turbulent state itself. In the dilute limit, we test analytical predictions for a number of static and dynamic properties against our simulation results. For higher swimmer densities, where swimmer-swimmer interactions become significant, we numerically show that the length- and timescales of the turbulent flows increase steeply near the predicted finite-system transition density.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا