ترغب بنشر مسار تعليمي؟ اضغط هنا

Assessing the Feasibility of Interrogating Nuclear Waste Storage Silos using Cosmic-ray Muons

280   0   0.0 ( 0 )
 نشر من قبل David Mahon
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Muon radiography is a fast growing field in applied scientific research. In recent years, many detector technologies and imaging techniques using the Coulomb scattering and absorption properties of cosmic-ray muons have been developed for the non-destructive assay of various structures across a wide range of applications. This work presents the first results that assess the feasibility of using muons to interrogate waste silos within the UK Nuclear Industry. Two such approaches, using different techniques that exploit each of these properties, have previously been published, and show promising results from both simulation and experimental data for the detection of shielded high-Z materials and density variations from volcanic assay. Both detector systems are based on scintillator and photomultiplier technologies. Results from dedicated simulation studies using both these technologies and image reconstruction techniques are presented for an intermediate-sized nuclear waste storage facility filled with concrete and an array of uranium samples. Both results highlight the potential to identify uranium objects of varying thicknesses greater than 5cm within real-time durations of several weeks. Increased contributions from Coulomb scattering within the concrete of the structure hinder the ability of both approaches to resolve objects of 2cm dimensions even with increased statistics. These results are all dependent on both the position of the objects within the facility and the locations of the detectors. Results for differing thicknesses of concrete, which reflect the unknown composition of the structures under interrogation, are also presented alongside studies performed for a series of data collection durations. It is anticipated that with further research, muon radiography in one, or both of these forms, will play a key role in future industrial applications within the UK Nuclear Industry.



قيم البحث

اقرأ أيضاً

International nuclear safeguards inspectors do not have a method to verify the contents of sealed storage casks containing spent reactor fuel. The heavy shielding that is used to limit radiation emission attenuates and scatters photons and neutrons e mitted by the fuel, and thereby hinders inspection with these probes. This problem is especially pressing given the policy decisions of several nations to begin permanent disposal of spent fuel in deep geological repositories. Radiography with cosmic-ray muons provides a potential solution, as muons are able to penetrate the cask and fuel and provide information on the cask contents. Here we show in simulation that muon scattering radiography can be used to inspect the contents of sealed geological storage casks, and can discern between a variety of plausible diversion scenarios. This technique can be applied immediately prior to permanent interment in a geological repository, giving inspectors a final opportunity to verify State declarations of spent fuel disposal.
The possibility to build a SiPM-readout muon detector (SiRO), using plastic scintillators with optical fibers as sensitive volume and readout by SiPM photo-diodes, is investigated. SiRO shall be used for tracking cosmic muons based on amplitude discr imination. The detector concept foresees a stack of 6 active layers, grouped in 3 sandwiches for determining the muon trajectories through 3 planes. After investigating the characteristics of the photodiodes, tests have been performed using two detection modules, each being composed from a plastic scintillator sheet, $100 times 25 times 1,$cm$^{3}$, with 12 parallel, equidistant ditches; each ditch filled with an optical fiber of $1.5,$mm thickness and always two fibers connected to form a channel. The attenuation of the light response along the optical fiber and across the channels have been tested. The measurements of the incident muons based on the input amplitude discrimination indicate that this procedure is not efficient and therefore not sufficient, as only about 30% of the measured events could be used in the reconstruction of the muon trajectories. Based on the studies presented in this paper, the layout used for building the SiRO detector will be changed as well as the analog acquisition technique will be replaced by a digital one.
Radiography with cosmic ray muon scattering has proven to be a successful method of imaging nuclear material through heavy shielding. Of particular interest is monitoring dry storage casks for diversion of plutonium contained in spent reactor fuel. U sing muon tracking detectors that surround a cylindrical cask, cosmic ray muon scattering can be simultaneously measured from all azimuthal angles, giving complete tomographic coverage of the cask interior. This paper describes the first application of filtered back projection algorithms, typically used in medical imaging, to cosmic ray muon imaging. The specific application to monitoring spent nuclear fuel in dry storage casks is investigated via GEANT4 simulations. With a cylindrical muon tracking detector surrounding a typical spent fuel cask, the cask contents can be confirmed with high confidence in less than two days exposure. Similar results can be obtained by moving a smaller detector to view the cask from multiple angles.
109 - Y. Cheng , R. Han , Z.Li 2020
Muon radiography is a promising technique to image the internal density structures upto a few hundred meters scale, such as tunnels, pyramids and volcanos, by measuring the flux attenuation of cosmic ray muons after trvaling through these targets. In this study, we conducted an experimantal cosmic ray muon radiography of the Wudalianchi volcano in northeast China for imaging its internal density structures. The muon detector used in this study is made of plastic scintillator and silicon photomultiplier. After about one and a half month observation for the Laoheishan volcano cone in the Wudalianchi volcano, from September 23rd to November 10th, 2019, more than 3 million muon tracks passing the data selection criteria are obtained. Based on the muon observations and the high-resoluiton topography from aerial photogrammetry by unmanned aerial vehicle, the relative density image of the Laoheishan volcano cone is obtained. The experiment in this study is the first muon radiography of volcano performed in China, and the results suggest the feasibility of radiography technique based on plastic scintillator muon detector. As a new passive geophysical imaging method, cosmic ray muon radiography could become a promising method to obtain the high-resoution 2-D and 3-D density structures for shallow geological targets.
Large liquid argon time projection chambers (LArTPCs), especially those operating near the surface, are susceptible to space charge effects. In the context of LArTPCs, the space charge effect is the build-up of slow-moving positive ions in the detect or primarily due to ionization from cosmic rays, leading to a distortion of the electric field within the detector. This effect leads to a displacement in the reconstructed position of signal ionization electrons in LArTPC detectors (spatial distortions), as well as to variations in the amount of electron-ion recombination experienced by ionization throughout the volume of the TPC. We present techniques that can be used to measure and correct for space charge effects in large LArTPCs by making use of cosmic muons, including the use of track pairs to unambiguously pin down spatial distortions in three dimensions. The performance of these calibration techniques are studied using both Monte Carlo simulation and MicroBooNE data, utilizing a UV laser system as a means to estimate the systematic bias associated with the calibration methodology.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا