ترغب بنشر مسار تعليمي؟ اضغط هنا

Cosmic ray muon computed tomography of spent nuclear fuel in dry storage casks

75   0   0.0 ( 0 )
 نشر من قبل J. Matthew Durham
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Radiography with cosmic ray muon scattering has proven to be a successful method of imaging nuclear material through heavy shielding. Of particular interest is monitoring dry storage casks for diversion of plutonium contained in spent reactor fuel. Using muon tracking detectors that surround a cylindrical cask, cosmic ray muon scattering can be simultaneously measured from all azimuthal angles, giving complete tomographic coverage of the cask interior. This paper describes the first application of filtered back projection algorithms, typically used in medical imaging, to cosmic ray muon imaging. The specific application to monitoring spent nuclear fuel in dry storage casks is investigated via GEANT4 simulations. With a cylindrical muon tracking detector surrounding a typical spent fuel cask, the cask contents can be confirmed with high confidence in less than two days exposure. Similar results can be obtained by moving a smaller detector to view the cask from multiple angles.

قيم البحث

اقرأ أيضاً

Most of the plutonium in the world resides inside spent nuclear reactor fuel rods. This high-level radioactive waste is commonly held in long-term storage within large, heavily shielded casks. Currently, international nuclear safeguards inspectors ha ve no stand-alone method of verifying the amount of reactor fuel stored within a sealed cask. Here we demonstrate experimentally that measurements of the scattering angles of cosmic ray muons which pass through a storage cask can be used to determine if spent fuel assemblies are missing without opening the cask. This application of technology and methods commonly used in high-energy particle physics provides a potential solution to this long-standing problem in international nuclear safeguards.
International nuclear safeguards inspectors do not have a method to verify the contents of sealed storage casks containing spent reactor fuel. The heavy shielding that is used to limit radiation emission attenuates and scatters photons and neutrons e mitted by the fuel, and thereby hinders inspection with these probes. This problem is especially pressing given the policy decisions of several nations to begin permanent disposal of spent fuel in deep geological repositories. Radiography with cosmic-ray muons provides a potential solution, as muons are able to penetrate the cask and fuel and provide information on the cask contents. Here we show in simulation that muon scattering radiography can be used to inspect the contents of sealed geological storage casks, and can discern between a variety of plausible diversion scenarios. This technique can be applied immediately prior to permanent interment in a geological repository, giving inspectors a final opportunity to verify State declarations of spent fuel disposal.
Cosmic-ray muons can be used for the non-destructive imaging of spent nuclear fuel in sealed dry storage casks. The scattering data of the muons after traversing provides information on the thereby penetrated materials. Based on these properties, we investigate and discuss the theoretical feasibility of detecting single missing fuel rods in a sealed cask for the first time. We perform simulations of a vertically standing generic cask model loaded with fuel assemblies from a pressurized water reactor and muon detectors placed above and below the cask. By analysing the scattering angles and applying a significance ratio based on the Kolmogorov-Smirnov test statistic we conclude that missing rods can be reliably identified in a reasonable measuring time period depending on their position in the assembly and cask, and on the angular acceptance criterion of the primary, incoming muons.
A feasibility demonstration of three-dimensional (3D) muon tomography was performed for infrastructure equivalent targets using the proposed portable muography detector. For the target, we used two sets of lead blocks placed at different heights. The detector consists of two muon position-sensitive detectors, made of plastic scintillating fibers (PSFs) and multi-pixel photon counters (MPPCs) with an angular resolution of 8 msr. The maximum likelihood-expectation maximization (ML-EM) method was used for the 3D imaging reconstruction of the muography simulation and measurement. For both simulation and experiment, the reconstructed positions of the blocks produce consistent results with prior knowledge of the blocks arrangement. This result demonstrates the potential of the 3D tomographic imaging of infrastructure by using eleven detection positions for portable muography detectors to image infrastructure scale targets.
76 - X.B. Ma , Y.F. Zhao , Y.X. Chen 2015
Spent nuclear fuel (SNF) antineutrino flux is an important source of uncertainties for a reactor neutrino flux prediction. However, if one want to determine the contribution of spent fuel, many data are needed, such as the amount of spent fuel in the pool, the time after discharged from the reactor core, the burnup of each assembly, and the antineutrino spectrum of the isotopes in the spend fuel. A method to calculate the contribution of SNF is proposed in this study. In this method, reactor simulation code verified by experiment have been used to simulate the fuel depletion by taking into account more than 2000 isotopes and fission products, the quantity of SNF in each six spend fuel pool, and the antineutrino spectrum of SNF varying with time after SNF discharged from core. Results show that the contribution of SNF to the total antineutrino flux is about 0.26%~0.34%, and the shutdown impact is about 20%. The SNF spectrum would distort the softer part of antineutrino spectra, and the maximum contribution from SNF is about 3.0%, but there is 18% difference between line evaluate method and under evaluate method. In addition, non-equilibrium effects are also discussed, and the results are compatible with theirs considering the uncertainties.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا