ترغب بنشر مسار تعليمي؟ اضغط هنا

Experimental density radiography of Wudalianchi volcano with cosmic ray muons

110   0   0.0 ( 0 )
 نشر من قبل Ya-Ping Cheng
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Muon radiography is a promising technique to image the internal density structures upto a few hundred meters scale, such as tunnels, pyramids and volcanos, by measuring the flux attenuation of cosmic ray muons after trvaling through these targets. In this study, we conducted an experimantal cosmic ray muon radiography of the Wudalianchi volcano in northeast China for imaging its internal density structures. The muon detector used in this study is made of plastic scintillator and silicon photomultiplier. After about one and a half month observation for the Laoheishan volcano cone in the Wudalianchi volcano, from September 23rd to November 10th, 2019, more than 3 million muon tracks passing the data selection criteria are obtained. Based on the muon observations and the high-resoluiton topography from aerial photogrammetry by unmanned aerial vehicle, the relative density image of the Laoheishan volcano cone is obtained. The experiment in this study is the first muon radiography of volcano performed in China, and the results suggest the feasibility of radiography technique based on plastic scintillator muon detector. As a new passive geophysical imaging method, cosmic ray muon radiography could become a promising method to obtain the high-resoution 2-D and 3-D density structures for shallow geological targets.



قيم البحث

اقرأ أيضاً

The powerful muon and tracker systems of the CMS detector together with dedicated reconstruction software allow precise and efficient measurement of muon tracks originating from proton-proton collisions. The standard muon reconstruction algorithms, h owever, are inadequate to deal with muons that do not originate from collisions. We present the design, implementation, and performance of a dedicated cosmic muon track reconstruction algorithm, which features pattern recognition optimized for muons that are not coming from the interaction point, i.e. cosmic muons and beam-halo muons. To evaluate the performance of the new algorithm, data taken during Cosmic Challenge phases I and II as well as beam-halo muons recorded during the first LHC beam operation were studied. In addition, a variety of more general topologies of cosmic muons and beam-halo muons were studied using simulated data to demonstrate some key features of the new algorithm.
We have measured the muon flux and production rate of muon-induced neutrons at a depth of 611 m water equivalent. Our apparatus comprises three layers of crossed plastic scintillator hodoscopes for tracking the incident cosmic-ray muons and 760 L of gadolinium-doped liquid scintillator for producing and detecting neutrons. The vertical muon intensity was measured to be $I_{mu} = (5.7 pm 0.6) times 10^{-6}$ cm$^{-2}$s$^{-1}$sr$^{-1}$. The yield of muon-induced neutrons in the liquid scintillator was determined to be $Y_{n} = (1.19 pm 0.08 (stat) pm 0.21 (syst)) times 10^{-4}$ neutrons/($mucdot$g$cdot$cm$^{-2}$). A fit to the recently measured neutron yields at different depths gave a mean muon energy dependence of $leftlangle E_{mu} rightrangle^{0.76 pm 0.03}$ for liquid-scintillator targets.
In this report, we assess muon multiple scattering tomography as a non-destructive inspection technique in several typical areas of interest to the nuclear power industry, including monitoring concrete degradation, gate valve conditions, and pipe wal l thickness. This work is motivated by the need for radiographic methods that do not require the licensing, training, and safety controls of x-rays, and by the need to be able to penetrate considerable overburden to examine internal details of components that are otherwise inaccessible, with minimum impact on industrial operations. In some scenarios, we find that muon tomography may be an attractive alternative to more typical measurements.
We studied the inner structure of the nuclear reactor of the Japan Atomic Power Company (JAPC) at Tokai, Japan, by the muon radiography. In this study, muon detectors were placed outside of the reactor building. By detecting cosmic muons penetrating through the wall of the reactor building, we could successfully identify the objects such as the containment vessel, pressure vessel, and other structures of the reactor. We also observed a concentration of heavy material which can be attributed to the nuclear fuel assemblies stored in the nuclear fuel storage pool.
The X-ARAPUCA device is the baseline choice for the photon detection system of the first far detector module of the DUNE experiment. We present the results of the first complete characterization of a small scale X-ARAPUCA prototype, which is a slice of a full DUNE module. Its total detection efficiency in liquid argon was measured with three different ionizing radiations: $alpha$ particles, $gamma$s and muons and resulted to be $sim$3.0%. This value comfortably satisfies the requirements of the first DUNE far detector module (detection efficiency $>$2.0%) and allows to achieve an energy resolution comparable to the one achievable with the Time Projection Chambers for energies below 10 MeV, which is the region relevant for Supernova neutrino detection.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا