ترغب بنشر مسار تعليمي؟ اضغط هنا

Towards a Landau-Ginzburg-type Theory for Granular Fluids

69   0   0.0 ( 0 )
 نشر من قبل Jun'ichi Wakou
 تاريخ النشر 2001
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we show how, under certain restrictions, the hydrodynamic equations for the freely evolving granular fluid fit within the framework of the time dependent Landau-Ginzburg (LG) models for critical and unstable fluids (e.g. spinodal decomposition). The granular fluid, which is usually modeled as a fluid of inelastic hard spheres (IHS), exhibits two instabilities: the spontaneous formation of vortices and of high density clusters. We suppress the clustering instability by imposing constraints on the system sizes, in order to illustrate how LG-equations can be derived for the order parameter, being the rate of deformation or shear rate tensor, which controls the formation of vortex patterns. From the shape of the energy functional we obtain the stationary patterns in the flow field. Quantitative predictions of this theory for the stationary states agree well with molecular dynamics simulations of a fluid of inelastic hard disks.



قيم البحث

اقرأ أيضاً

131 - James W. Dufty 2007
The terminology granular matter refers to systems with a large number of hard objects (grains) of mesoscopic size ranging from millimeters to meters. Geological examples include desert sand and the rocks of a landslide. But the scope of such systems is much broader, including powders and snow, edible products such a seeds and salt, medical products like pills, and extraterrestrial systems such as the surface regolith of Mars and the rings of Saturn. The importance of a fundamental understanding for granular matter properties can hardly be overestimated. Practical issues of current concern range from disaster mitigation of avalanches and explosions of grain silos to immense economic consequences within the pharmaceutical industry. In addition, they are of academic and conceptual importance as well as examples of systems far from equilibrium. Under many conditions of interest, granular matter flows like a normal fluid. In the latter case such flows are accurately described by the equations of hydrodynamics. Attention is focused here on the possibility for a corresponding hydrodynamic description of granular flows. The tools of nonequilibrium statistical mechanics, developed over the past fifty years for fluids composed of atoms and molecules, are applied here to a system of grains for a fundamental approach to both qualitative questions and practical quantitative predictions. The nonlinear Navier-Stokes equations and expressions for the associated transport coefficients are obtained.
Since the concept of spin superconductor was proposed, all the related studies concentrate on spin-polarized case. Here, we generalize the study to spin-non-polarized case. The free energy of non-polarized spin superconductor is obtained, and the Gin zburg-Landau-type equations are derived by using the variational method. These Ginzburg-Landau-type equations can be reduced to the spin-polarized case when the spin direction is fixed. Moreover, the expressions of super linear and angular spin currents inside the superconductor are derived. We demonstrate that the electric field induced by super spin current is equal to the one induced by equivalent charge obtained from the second Ginzburg-Landau-type equation, which shows self-consistency of our theory. By applying these Ginzburg-Landau-type equations, the effect of electric field on the superconductor is also studied. These results will help us get a better understanding of the spin superconductor and the related topics such as Bose-Einstein condensate of magnons and spin superfluidity.
Searching for characteristic signatures of a higher order phase transition (specifically of order three or four), we have calculated the spatial profiles and the energies of a spatially varying order parameter in one dimension. In the case of a $p^{t h}$ order phase transition to a superconducting ground state, the free energy density depends on temperature as $a^p$, where $a = a_o(1-T/T_c)$ is the reduced temperature. The energy of a domain wall between two degenerate ground states is $epsilon_p simeq a^{p-1/2}$. We have also investigated the effects of a supercurrent in a narrow wire. These effects are limited by a critical current which has a temperature dependence $J_c(T) simeq a^{(2p-1)/2}$. The phase slip center profiles and their energies are also calculated. Given the suggestion that the superconducting transtion in bkbox, for $x = 0.4$, may be of order four, these predictions have relevance for future experiments.
This paper presents an introduction to phase transitions and critical phenomena on the one hand, and nonequilibrium patterns on the other, using the Ginzburg-Landau theory as a unified language. In the first part, mean-field theory is presented, for both statics and dynamics, and its validity tested self-consistently. As is well known, the mean-field approximation breaks down below four spatial dimensions, where it can be replaced by a scaling phenomenology. The Ginzburg-Landau formalism can then be used to justify the phenomenological theory using the renormalization group, which elucidates the physical and mathematical mechanism for universality. In the second part of the paper it is shown how near pattern forming linear instabilities of dynamical systems, a formally similar Ginzburg-Landau theory can be derived for nonequilibrium macroscopic phenomena. The real and complex Ginzburg-Landau equations thus obtained yield nontrivial solutions of the original dynamical system, valid near the linear instability. Examples of such solutions are plane waves, defects such as dislocations or spirals, and states of temporal or spatiotemporal (extensive) chaos.
In this paper we investigate bubble nucleation in a disordered Landau-Ginzburg model. First we adopt the standard procedure to average over the disordered free energy. This quantity is represented as a series of the replica partition functions of the system. Using the saddle-point equations in each replica partition function, we discuss the presence of a spontaneous symmetry breaking mechanism. The leading term of the series is given by a large-N Euclidean replica field theory. Next, we consider finite temperature effects. Below some critical temperature, there are N real instantons-like solutions in the model. The transition from the false to the true vacuum for each replica field is given by the nucleation of a bubble of the true vacuum. In order to describe these irreversible processes of multiple nucleation, going beyond the diluted instanton approximation, an effective model is constructed, with one single mode of a bosonic field interacting with a reservoir of N identical two-level systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا