ترغب بنشر مسار تعليمي؟ اضغط هنا

Indices to detect Hopf bifurcation in Induction motor drives

329   0   0.0 ( 0 )
 نشر من قبل Krishnendu Chakrabarty Dr.
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The loss of stability of induction motor controlled by Indirect Field Oriented Control (IFOC) is a matter of great concern of operators and design engineers. This paper reports indices to detect and predict stability problem such as system oscillations. Oscillations as a result of loss of stability, due to Hopf bifurcation, for different parameter values of IFOC motor are studied using the proposed indices.



قيم البحث

اقرأ أيضاً

The induction motor controlled by Indirect Field Oriented Control (IFOC) is known to have high performance and better stability. This paper reports the dynamical behavior of an indirect field oriented control (IFOC) induction motor drive in the light of bifurcation theory. The speed of high performance induction motor drive is controlled by IFOC method. The knowledge of qualitative change of the behavior of the motor such as equilibrium points, limit cycles and chaos with the change of motor parameters and load torque are essential for proper control of the motor. This paper provides a numerical approach to understand better the dynamical behavior of an indirect field oriented control of a current-fed induction motor. The focus is on bifurcation analysis of the IFOC motor, with a particular emphasis on the change that affects the dynamics and stability under small variations of Proportional Integral controller (PI) parameters, load torque and k, the ratio of the rotor time constant and its estimate etc. Bifurcation diagrams are computed. This paper also attempts to discuss various types of the transition to chaos in the induction motor. The results of the obtained bifurcation simulations give useful guidelines for adjusting both motor model and PI controller parameters. It is also important to ensure desired operation of the motor when the motor shows chaotic behavior. Infinite numbers of unstable periodic orbits are embedded in a chaotic attractor. Any unstable periodic orbit can be stabilized by proper control algorithm. The delayed feedback control method to control chaos has been implemented in this system.
The paper presents bifurcation behavior of a single phase induction motor. This paper also attempts to discuss the bifurcation behavior of the system based on the evolution of different state variables. The bifurcation diagrams drawn looking at diffe rent state variables are different in terms of periodicity and route to chaos. The knowledge of the dynamics of the system obtained from bifurcation diagrams give useful guidelines to control the operation of the induction motor depending on the need of an application for better performance.
We consider the dynamics of a two-dimensional ordinary differential equation exhibiting a Hopf bifurcation subject to additive white noise and identify three dynamical phases: (I) a random attractor with uniform synchronisation of trajectories, (II) a random attractor with non-uniform synchronisation of trajectories and (III) a random attractor without synchronisation of trajectories. The random attractors in phases (I) and (II) are random equilibrium points with negative Lyapunov exponents while in phase (III) there is a so-called random strange attractor with positive Lyapunov exponent. We analyse the occurrence of the different dynamical phases as a function of the linear stability of the origin (deterministic Hopf bifurcation parameter) and shear (ampitude-phase coupling parameter). We show that small shear implies synchronisation and obtain that synchronisation cannot be uniform in the absence of linear stability at the origin or in the presence of sufficiently strong shear. We provide numerical results in support of a conjecture that irrespective of the linear stability of the origin, there is a critical strength of the shear at which the system dynamics loses synchronisation and enters phase (III).
Cytoskeletal networks form complex intracellular structures. Here we investigate a minimal model for filament-motor mixtures in which motors act as depolymerases and thereby regulate filament length. Combining agent-based simulations and hydrodynamic equations, we show that resource-limited length regulation drives the formation of filament clusters despite the absence of mechanical interactions between filaments. Even though the orientation of individual remains fixed, collective filament orientation emerges in the clusters, aligned orthogonal to their interfaces.
236 - Fatihcan M. Atay 2008
The stability of functional differential equations under delayed feedback is investigated near a Hopf bifurcation. Necessary and sufficient conditions are derived for the stability of the equilibrium solution using averaging theory. The results are u sed to compare delayed versus undelayed feedback, as well as discrete versus distributed delays. Conditions are obtained for which delayed feedback with partial state information can yield stability where undelayed feedback is ineffective. Furthermore, it is shown that if the feedback is stabilizing (respectively, destabilizing), then a discrete delay is locally the most stabilizing (resp., destabilizing) one among delay distributions having the same mean. The result also holds globally if one considers delays that are symmetrically distributed about their mean.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا