ﻻ يوجد ملخص باللغة العربية
We consider the dynamics of a two-dimensional ordinary differential equation exhibiting a Hopf bifurcation subject to additive white noise and identify three dynamical phases: (I) a random attractor with uniform synchronisation of trajectories, (II) a random attractor with non-uniform synchronisation of trajectories and (III) a random attractor without synchronisation of trajectories. The random attractors in phases (I) and (II) are random equilibrium points with negative Lyapunov exponents while in phase (III) there is a so-called random strange attractor with positive Lyapunov exponent. We analyse the occurrence of the different dynamical phases as a function of the linear stability of the origin (deterministic Hopf bifurcation parameter) and shear (ampitude-phase coupling parameter). We show that small shear implies synchronisation and obtain that synchronisation cannot be uniform in the absence of linear stability at the origin or in the presence of sufficiently strong shear. We provide numerical results in support of a conjecture that irrespective of the linear stability of the origin, there is a critical strength of the shear at which the system dynamics loses synchronisation and enters phase (III).
Using geometric inversion with respect to the origin we extend the definition of box dimension to the case of unbounded subsets of Euclidean spaces. Alternative but equivalent definition is provided using stereographic projection on the Riemann spher
In this paper, we show the existence of Hopf bifurcation of a delayed single population model with patch structure. The effect of the dispersal rate on the Hopf bifurcation is considered. Especially, if each patch is favorable for the species, we sho
In this paper, we consider a general reaction-diffusion system with nonlocal effects and Neumann boundary conditions, where a spatial average kernel is chosen to be the nonlocal kernel. By virtue of the center manifold reduction technique and normal
In this paper we study the stabilization of rotating waves using time delayed feedback control. It is our aim to put some recent results in a broader context by discussing two different methods to determine the stability of the target periodic orbit
Time-delay chaotic systems refer to the hyperchaotic systems with multiple positive Lyapunov exponents. It is characterized by more complex dynamics and a wider range of applications as compared to those non-time-delay chaotic systems. In a three-dim