ترغب بنشر مسار تعليمي؟ اضغط هنا

A novel proof of the DFT formula for the interatomic force field of Molecular Dynamics

68   0   0.0 ( 0 )
 نشر من قبل Giancarlo Rossi
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We give a novel and simple proof of the DFT expression for the interatomic force field that drives the motion of atoms in classical Molecular Dynamics, based on the observation that the ground state electronic energy, seen as a functional of the external potential, is the Legendre transform of the Hohenberg-Kohn functional, which in turn is a functional of the electronic density. We show in this way that the so-called Hellmann-Feynman analytical formula, currently used in numerical simulations, actually provides the exact expression of the interatomic force.

قيم البحث

اقرأ أيضاً

96 - J. Trullas , V. Bitrian 2006
Three different polarizable ion models for molten AgBr have been studied by molecular dynamics simulations. The three models are based on a rigid ion model (RIM) with a pair potential of the type proposed by Vashishta and Rahman for alpha-AgI, to whi ch the induced dipole polarization of the ions is added. In the first (PIM1), the dipole moments are only induced by the local electric field; while in the other two (PIM1s and PIM2s), a short-range overlap induced polarization opposes the electrically induced dipole moments. In the PIM1 and the PIM1s only the anions are assumed polarizable, while in the PIM2s both species are polarizable. Long molecular dynamics simulations show that the PIM2s is an unphysical model since, for some improbable but possible critical configurations, the ions become infinitely polarized. The results of using the PIM1, the PIM1s, as well as those of the simple RIM, have been compared for the static structure and ionic transport properties. The PIM1 reproduces the broad main peak of the total structure factor present in the neutron diffraction data, although the smoothed three-peak feature of this broad peak is slightly overestimated. The structural results for the PIM1s are intermediate between those for the RIM and the PIM1, but fail to reproduce the experimental features within the broad principal peak. Concerning the ionic transport properties, the value of the conductivity obtained using PIM1 is in good agreement with experimental values, while the self-diffusion coefficients and the conductivity for the PIM1s are lower than the corresponding values using the PIM1 and the RIM.
The thermal degradation of a graphene-like two-dimensional triangular membrane with bonds undergoing temperature-induced scission is studied by means of Molecular Dynamics simulation using Langevin thermostat. We demonstrate that the probability dist ribution of breaking bonds is highly peaked at the rim of the membrane sheet at lower temperature whereas at higher temperature bonds break at random anywhere in the hexagonal flake. The mean breakage time $tau$ is found to decrease with the total number of network nodes $N$ by a power law $tau propto N^{-0.5}$ and reveals an Arrhenian dependence on temperature $T$. Scission times are themselves exponentially distributed. The fragmentation kinetics of the average number of clusters can be described by first-order chemical reactions between network nodes $n_i$ of different coordination. The distribution of fragments sizes evolves with time elapsed from a $delta$-function through a bimodal one into a single-peaked again at late times. Our simulation results are complemented by a set of $1^{st}$-order kinetic differential equations for $n_i$ which can be solved exactly and compared to data derived from the computer experiment, providing deeper insight into the thermolysis mechanism.
Classical molecular dynamics simulations have recently become a standard tool for the study of electrochemical systems. State-of-the-art approaches represent the electrodes as perfect conductors, modelling their responses to the charge distribution o f electrolytes via the so-called fluctuating charge model. These fluctuating charges are additional degrees of freedom that, in a Born-Oppenheimer spirit, adapt instantaneously to changes in the environment to keep each electrode at a constant potential. Here we show that this model can be treated in the framework of constrained molecular dynamics, leading to a symplectic and time-reversible algorithm for the evolution of all the degrees of freedom of the system. The computational cost and the accuracy of the new method are similar to current alternative implementations of the model. The advantage lies in the accuracy and long term stability guaranteed by the formal properties of the algorithm and in the possibility to systematically introduce additional kinematic conditions of arbitrary number and form. We illustrate the performance of the constrained dynamics approach by enforcing the electroneutrality of the electrodes in a simple capacitor consisting of two graphite electrodes separated by a slab of liquid water.
Isothermal-isobaric molecular dynamics simulations have been performed to examine a broad set of properties of the model water-1,2-dimethoxyethane (DME) mixture as a function of composition. The SPC-E and TIP4P-Ew water models and the modified TraPPE model for DME were applied. Our principal focus was to explore the trends of behaviour of the structural properties in terms of the radial distribution functions, coordination numbers and number of hydrogen bonds between molecules of different species, and of conformations of DME molecules. Thermodynamic properties, such as density, molar volume, enthalpy of mixing and heat capacity at constant pressure have been examined. Finally, the self-diffusion coefficients of species and the dielectric constant of the system were calculated and analyzed.
89 - Ivo Nezbeda 2016
Although aqueous electrolytes are among the most important solutions, the molecular simulation of their intertwined properties of chemical potentials, solubility and activity coefficients has remained a challenging problem, and has attracted consider able recent interest. In this perspectives review, we focus on the simplest case of aqueous sodium chloride at ambient conditions and discuss the two main factors that have impeded progress. The first is lack of consensus with respect to the appropriate methodology for force field (FF) development. We examine how most commonly used FFs have been developed, and emphasize the importance of distinguishing between Training Set Properties used to fit the FF parameters, and Test Set Properties, which are pure predictions of additional properties. The second is disagreement among solubility results obtained, even using identical FFs and thermodynamic conditions. Solubility calculations have been approached using both thermodynamic--based methods and direct molecular dynamics--based methods implementing coexisting solution and solid phases. Although convergence has been very recently achieved among results based on the former approach, there is as yet no general agreement with simulation results based on the latter methodology. We also propose a new method to directly calculate the electrolyte standard chemical potential in the Henry-Law ideality model. We conclude by making recommendations for calculating solubility, chemical potentials and activity coefficients, and outline a potential path for future progress.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا