ترغب بنشر مسار تعليمي؟ اضغط هنا

A martingale-transform goodness-of-fit test for the form of the conditional variance

156   0   0.0 ( 0 )
 نشر من قبل Holger Dette
 تاريخ النشر 2008
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

In the common nonparametric regression model the problem of testing for a specific parametric form of the variance function is considered. Recently Dette and Hetzler (2008) proposed a test statistic, which is based on an empirical process of pseudo residuals. The process converges weakly to a Gaussian process with a complicated covariance kernel depending on the data generating process. In the present paper we consider a standardized version of this process and propose a martingale transform to obtain asymptotically distribution free tests for the corresponding Kolmogorov-Smirnov and Cram{e}r-von-Mises functionals. The finite sample properties of the proposed tests are investigated by means of a simulation study.



قيم البحث

اقرأ أيضاً

Recently there have been many research efforts in developing generative models for self-exciting point processes, partly due to their broad applicability for real-world applications. However, rarely can we quantify how well the generative model captu res the nature or ground-truth since it is usually unknown. The challenge typically lies in the fact that the generative models typically provide, at most, good approximations to the ground-truth (e.g., through the rich representative power of neural networks), but they cannot be precisely the ground-truth. We thus cannot use the classic goodness-of-fit (GOF) test framework to evaluate their performance. In this paper, we develop a GOF test for generative models of self-exciting processes by making a new connection to this problem with the classical statistical theory of Quasi-maximum-likelihood estimator (QMLE). We present a non-parametric self-normalizing statistic for the GOF test: the Generalized Score (GS) statistics, and explicitly capture the model misspecification when establishing the asymptotic distribution of the GS statistic. Numerical simulation and real-data experiments validate our theory and demonstrate the proposed GS tests good performance.
146 - Nicolas Verzelen 2008
Let $(Y,(X_i)_{iinmathcal{I}})$ be a zero mean Gaussian vector and $V$ be a subset of $mathcal{I}$. Suppose we are given $n$ i.i.d. replications of the vector $(Y,X)$. We propose a new test for testing that $Y$ is independent of $(X_i)_{iin mathcal{I }backslash V}$ conditionally to $(X_i)_{iin V}$ against the general alternative that it is not. This procedure does not depend on any prior information on the covariance of $X$ or the variance of $Y$ and applies in a high-dimensional setting. It straightforwardly extends to test the neighbourhood of a Gaussian graphical model. The procedure is based on a model of Gaussian regression with random Gaussian covariates. We give non asymptotic properties of the test and we prove that it is rate optimal (up to a possible $log(n)$ factor) over various classes of alternatives under some additional assumptions. Besides, it allows us to derive non asymptotic minimax rates of testing in this setting. Finally, we carry out a simulation study in order to evaluate the performance of our procedure.
In many scientific problems, researchers try to relate a response variable $Y$ to a set of potential explanatory variables $X = (X_1,dots,X_p)$, and start by trying to identify variables that contribute to this relationship. In statistical terms, thi s goal can be posed as trying to identify $X_j$s upon which $Y$ is conditionally dependent. Sometimes it is of value to simultaneously test for each $j$, which is more commonly known as variable selection. The conditional randomization test (CRT) and model-X knockoffs are two recently proposed methods that respectively perform conditional independence testing and variable selection by, for each $X_j$, computing any test statistic on the data and assessing that test statistics significance by comparing it to test statistics computed on synthetic variables generated using knowledge of $X$s distribution. Our main contribution is to analyze their power in a high-dimensional linear model where the ratio of the dimension $p$ and the sample size $n$ converge to a positive constant. We give explicit expressions of the asymptotic power of the CRT, variable selection with CRT $p$-values, and model-X knockoffs, each with a test statistic based on either the marginal covariance, the least squares coefficient, or the lasso. One useful application of our analysis is the direct theoretical comparison of the asymptotic powers of variable selection with CRT $p$-values and model-X knockoffs; in the instances with independent covariates that we consider, the CRT provably dominates knockoffs. We also analyze the power gain from using unlabeled data in the CRT when limited knowledge of $X$s distribution is available, and the power of the CRT when samples are collected retrospectively.
The Ising model is one of the simplest and most famous models of interacting systems. It was originally proposed to model ferromagnetic interactions in statistical physics and is now widely used to model spatial processes in many areas such as ecolog y, sociology, and genetics, usually without testing its goodness of fit. Here, we propose various test statistics and an exact goodness-of-fit test for the finite-lattice Ising model. The theory of Markov bases has been developed in algebraic statistics for exact goodness-of-fit testing using a Monte Carlo approach. However, finding a Markov basis is often computationally intractable. Thus, we develop a Monte Carlo method for exact goodness-of-fit testing for the Ising model which avoids computing a Markov basis and also leads to a better connectivity of the Markov chain and hence to a faster convergence. We show how this method can be applied to analyze the spatial organization of receptors on the cell membrane.
85 - Hangjin Jiang 2020
Statistical modeling plays a fundamental role in understanding the underlying mechanism of massive data (statistical inference) and predicting the future (statistical prediction). Although all models are wrong, researchers try their best to make some of them be useful. The question here is how can we measure the usefulness of a statistical model for the data in hand? This is key to statistical prediction. The important statistical problem of testing whether the observations follow the proposed statistical model has only attracted relatively few attentions. In this paper, we proposed a new framework for this problem through building its connection with two-sample distribution comparison. The proposed method can be applied to evaluate a wide range of models. Examples are given to show the performance of the proposed method.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا