ترغب بنشر مسار تعليمي؟ اضغط هنا

Arithmetic topology of 4-manifolds

74   0   0.0 ( 0 )
 نشر من قبل Igor V. Nikolaev
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English
 تأليف Igor Nikolaev




اسأل ChatGPT حول البحث

We construct a functor from the smooth 4-dimensional manifolds to the hyper-algebraic number fields, i.e. fields with non-commutative multiplication. It is proved that that the simply connected 4-manifolds correspond to the abelian extensions. We recover the Rokhlin and Donaldsons Theorems from the Galois theory of the non-commutative fields.



قيم البحث

اقرأ أيضاً

126 - Christian Bohr 2000
In this paper, we prove a number of inequalities between the signature and the Betti numbers of a 4-manifold with even intersection form. Furthermore, we introduce a new geometric group invariant and discuss some of its properties.
We prove that for 4-manifolds $M$ with residually finite fundamental group and non-spin universal covering $Wi M$, the inequality $dim_{mc}Wi Mle 3$ implies the inequality $dim_{mc}Wi Mle 2$.
170 - Tadayuki Watanabe 2020
In this article, we construct countably many mutually non-isotopic diffeomorphisms of some closed non simply-connected 4-manifolds that are homotopic to but not isotopic to the identity, by surgery along $Theta$-graphs. As corollaries of this, we obt ain some new results on codimension 1 embeddings and pseudo-isotopies of 4-manifolds. In the proof of the non-triviality of the diffeomorphisms, we utilize a twisted analogue of Kontsevichs characteristic class for smooth bundles, which is obtained by extending a higher dimensional analogue of March{e}--Lescops equivariant triple intersection in configuration spaces of 3-manifolds to allow Lie algebraic local coefficient system.
131 - Masanori Morishita 2009
This is an expository article of our work on analogies between knot theory and algebraic number theory. We shall discuss foundational analogies between knots and primes, 3-manifolds and number rings mainly from the group-theoretic point of view.
A smooth five-dimensional s-cobordism becomes a smooth product if stabilized by a finite number n of $S^2xS^2x[0,1]$s. We show that for amenable fundamental groups, the minimal n is subextensive in covers, i.e., n(cover)/index(cover) has limit 0. We focus on the notion of sweepout width, which is a bridge between 4-dimensional topology and coarse geometry.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا