ﻻ يوجد ملخص باللغة العربية
We present a Gershgorins type result on the localisation of the spectrum of a matrix. Our method is elementary and relies upon the method of Schur complements, furthermore it outperforms the one based on the Cassini ovals of Ostrovski and Brauer. Furthermore, it yields estimates that hold without major differences in the cases of both scalar and operator matrices. Several refinements of known results are obtained.
This paper studies the size of the minimal gap between any two consecutive eigenvalues in the Dirichlet and in the Neumann spectrum of the standard Laplace operator on the Sierpinski gasket. The main result shows the remarkable fact that this minimal
The quaternionic spectral theorem has already been considered in the literature, see e.g. [22], [31], [32], however, except for the finite dimensional case in which the notion of spectrum is associated to an eigenvalue problem, see [21], it is not sp
We study spectrum inclusion regions for complex Jacobi matrices which are compact perturbations of the discrete laplacian. The condition sufficient for the lack of discrete spectrum for such matrices is given.
We consider the plasmonic eigenvalue problem for a general 2D domain with a curvilinear corner, studying the spectral theory of the Neumann--Poincare operator of the boundary. A limiting absorption principle is proved, valid when the spectral paramet
We produce a new proof and extend results by Harrell and Stubbe for the discrete spectrum of a self-adjoint operator. An abstract approach--based on commutator algebra, the Rayleigh-Ritz principle, and an ``optimal usage of the Cauchy-Schwarz inequal