ﻻ يوجد ملخص باللغة العربية
We produce a new proof and extend results by Harrell and Stubbe for the discrete spectrum of a self-adjoint operator. An abstract approach--based on commutator algebra, the Rayleigh-Ritz principle, and an ``optimal usage of the Cauchy-Schwarz inequality--is used to produce ``parameter-free, ``projection-free
We study the trace class perturbations of the whole-line, discrete Laplacian and obtain a new bound for the perturbation determinant of the corresponding non-self-adjoint Jacobi operator. Based on this bound, we refine the Lieb--Thirring inequality d
We prove that the eigenvalues of a certain highly non-self-adjoint operator that arises in fluid mechanics correspond, up to scaling by a positive constant, to those of a self-adjoint operator with compact resolvent; hence there are infinitely many r
In [arXiv:0801.0172] we examined a family of periodic Sturm-Liouville problems with boundary and interior singularities which are highly non-self-adjoint but have only real eigenvalues. We now establish Schatten class properties of the associated resolvent operator.
In this paper we study a family of operators dependent on a small parameter $epsilon > 0$, which arise in a problem in fluid mechanics. We show that the spectra of these operators converge to N as $epsilon to 0$, even though, for fixed $epsilon > 0$, the eigenvalue asymptotics are quadratic.
We prove that the isoperimetric inequality due to Hersch-Payne-Schiffer for the n-th nonzero Steklov eigenvalue of a bounded simply-connected planar domain is sharp for all n=1,2,... The equality is attained in the limit by a sequence of simply-conne