ترغب بنشر مسار تعليمي؟ اضغط هنا

New Generalization of Perturbed Ostrowski Type Inequalities and Applications

204   0   0.0 ( 0 )
 نشر من قبل Wenjun Liu
 تاريخ النشر 2007
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Generalizations of Ostrowski type inequality for functions of Lipschitzian type are established. Applications in numerical integration and cumulative distribution functions are also given.



قيم البحث

اقرأ أيضاً

155 - Jianbing Cao , Yifeng Xue 2013
In this paper, the problems of perturbation and expression for the Moore--Penrose metric generalized inverses of bounded linear operators on Banach spaces are further studied. By means of certain geometric assumptions of Banach spaces, we first give some equivalent conditions for the Moore--Penrose metric generalized inverse of perturbed operator to have the simplest expression $T^M(I+ delta TT^M)^{-1}$. Then, as an application our results, we investigate the stability of some operator equations in Banach spaces under different type perturbations.
We show that an idea, originating initially with a fundamental recursive iteration scheme (usually referred as the Kaczmarz algorithm), admits important applications in such infinite-dimensional, and non-commutative, settings as are central to spectr al theory of operators in Hilbert space, to optimization, to large sparse systems, to iterated function systems (IFS), and to fractal harmonic analysis. We present a new recursive iteration scheme involving as input a prescribed sequence of selfadjoint projections. Applications include random Kaczmarz recursions, their limits, and their error-estimates.
228 - Bo-Yan Xi , Fuzhen Zhang 2021
The purpose of this paper is two-fold: we present some matrix inequalities of log-majorization type for eigenvalues indexed by a sequence; we then apply our main theorem to generalize and improve the Hua-Marcus inequalities. Our results are stronger and more general than the existing ones.
We use the general notion of set of indices to construct algebras of nonlinear generalized functions of Colombeau type. They are formally defined in the same way as the special Colombeau algebra, but based on more general growth condition formalized by the notion of asymptotic gauge. This generalization includes the special, full and nonstandard analysis based Colombeau type algebras in a unique framework. We compare Colombeau algebras generated by asymptotic gauges with other analogous construction, and we study systematically their properties, with particular attention to the existence and definition of embeddings of distributions. We finally prove that, in our framework, for every linear homogeneous ODE with generalized coefficients there exists a minimal Colombeau algebra generated by asymptotic gauges in which the ODE can be uniquely solved. This marks a main difference with the Colombeau special algebra, where only linear homogeneous ODEs satisfying some restriction on the coefficients can be solved.
We study the two-weighted estimate [ bigg|sum_{k=0}^na_k(x)int_0^xt^kf(t)dt|L_{q,v}(0,infty)bigg|leq c|f|L_{p,u}(0,infty)|,tag{$*$} ] where the functions $a_k(x)$ are not assumed to be positive. It is shown that for $1<pleq qleqinfty$, prov ided that the weight $u$ satisfies the certain conditions, the estimate $(*)$ holds if and only if the estimate [ sum_{k=0}^nbigg|a_k(x)int_0^xt^kf(t)dt|L_{q,v}(0,infty)bigg| leq c|f|L_{p,u}(0,infty)|.tag{$**$} ] is fulfilled. The necessary and sufficient conditions for $(**)$ to be valid are well-known. The obtained result can be applied to the estimates of differential operators with variable coefficients in some weighted Sobolev spaces.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا