ترغب بنشر مسار تعليمي؟ اضغط هنا

Three quark currents and baryon spin

180   0   0.0 ( 0 )
 نشر من قبل A. J. Buchmann
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We show that three-quark axial currents as required by broken SU(6) spin-flavor symmetry reduce the quark spin contribution to proton spin from $Sigma_p = 1$ (one-quark axial current value) to $Sigma_p = 0.41(12)$ consistent with the empirical value $Sigma_{p, exp} = 0.33(08)$. In the case of the $Delta^+(1232)$ baryon, we find that three-quark axial currents increase the one-quark axial current value $Sigma_{Delta^+} = 3$ to $Sigma_{Delta^+} = 3.87(22)$. We also calculate the quark orbital angular momenta $L_u$ and $L_d$ in the proton and $Delta^+$ and interpret our results in terms of the prolate and oblate geometric shapes of these baryons consistent with their intrinsic quadrupole moments.

قيم البحث

اقرأ أيضاً

Exclusive semileptonic decays of bottom and charm baryons are considered within a relativistic three-quark model with a Gaussian shape for the baryon-three-quark vertex and standard quark propagators. We calculate the baryonic Isgur-Wise functions, decay rates and asymmetry parameters.
We report on the first calculation of excited baryons with a chirally symmetric Hamiltonian, modeled after Coulomb gauge QCD (or upgraded from the Cornell meson potential model to a field theory in all of Fock-space) showing the insensitivity to chir al symmetry breaking. As has recently been understood, this leads to doubling between two hadrons of equal spin and opposite parity. As a novelty we show that three-quark, for example Delta states, group into quartets with two states of each parity, all four states having equal angular momentum J. Diagonalizing the chiral charge expressed in terms of quarks we show that the quartet is slightly split into two parity doublets by the tensor force, all splittings decreasing to zero high in the spectrum. Our specific calculation is for the family of maximum-spin excitations of the Delta baryon. We provide a model estimate of the experimental accuracy needed to establish Chiral Symmetry Restoration in the high spectrum. We suggest that a measurement of masses of high-partial wave Delta resonances with an accuracy of 50 MeV should be sufficient to unambiguously establish the approximate degeneracy, and test the concept of running quark mass in the infrared.
We establish a holographic bottom-up model which covers both the baryonic and quark matter phases in cold and dense QCD. This is obtained by including the baryons using simple approximation schemes in the V-QCD model, which also includes the backreac tion of the quark matter to the dynamics of pure Yang-Mills. We examine two approaches for homogeneous baryon matter: baryons as a thin layer of noninteracting matter in the holographic bulk, and baryons with a homogeneous bulk gauge field. We find that the second approach exhibits phenomenologically reasonable features. At zero temperature, the vacuum, baryon, and quark matter phases are separated by strongly first order transitions as the chemical potential varies. The equation of state in the baryonic phase is found to be stiff, i.e., the speed of sound clearly exceeds the value $c_s^2=1/3$ of conformal plasmas at high baryon densities.
69 - C. W. Xiao , J. Nieves , E. Oset 2019
We have studied the meson-baryon $S-$wave interaction, using coupled channels, in the isoscalar hidden-charm strange sector and $J^P = 1/2^-,3/2^-$ and $5/2^-$. We impose constraints of heavy quark spin symmetry in the interaction and obtain the non vanishing matrix elements from an extension of the local hidden gauge approach to the charm sector. The ultraviolet divergences are renormalized using the same meson-baryon-loops regulator previously employed in the non-strange hidden charm sector, where a good reproduction of the properties of the newly discovered pentaquark states is obtained. We obtain five states of $1/2^-$, four of $3/2^-$ and one of $5/2^-$, which could be compared in the near future with forthcoming LHCb experiments. The $5/2^-$, three of the $3/2^-$ and another three of the $1/2^-$ resonances are originated from isoscalar $bar D^{(*)}Xi_c^prime$ and $bar D^{(*)}Xi_c^*$ interactions. They should be located just few MeV below the corresponding thresholds (4446, 4513, 4588 and 4655 MeV), and would be SU(3)-siblings of the isospin 1/2 $bar D^{(*)} Sigma_c^{(*)}$ quasi-bound states previously found, and that provided a robust theoretical description of the $P_c(4440)$, $P_c(4457)$ and $P_c(4312)$ LHCb exotic states. The another two $1/2^-$ and $3/2^-$ states obtained in this work are result of the $bar D^{(*)}Xi_c-D^{(*)}_sLambda_c$ coupled-channels isoscalar interaction, are significantly broader than the others, with widths of the order of 15 MeV, being $bar D^{(*)}_sLambda_c$ the dominant decay channel.
64 - T. Melde , W. Plessas , 2008
We present a new classification scheme of baryon ground states and resonances into SU(3) flavor multiplets. The scheme is worked out along a covariant formalism with relativistic constituent quark models and it relies on detailed investigations of th e baryon spectra, the spin-flavor structure of the baryon eigenstates, the behaviour of their probability density distributions as well as covariant predictions for mesonic decay widths. The results are found to be quite independent of the specific types of relativistic constituent quark models employed. It turns out that a consistent classification requires to include also resonances that are presently reported from experiment with only two-star status.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا