ﻻ يوجد ملخص باللغة العربية
We present a new classification scheme of baryon ground states and resonances into SU(3) flavor multiplets. The scheme is worked out along a covariant formalism with relativistic constituent quark models and it relies on detailed investigations of the baryon spectra, the spin-flavor structure of the baryon eigenstates, the behaviour of their probability density distributions as well as covariant predictions for mesonic decay widths. The results are found to be quite independent of the specific types of relativistic constituent quark models employed. It turns out that a consistent classification requires to include also resonances that are presently reported from experiment with only two-star status.
Latest results from a study of baryon ground and resonant states within relativistic constituent quark models are reported. After recalling some typical spectral properties, the description of ground states, especially with regard to the nucleon and
The challenges with the molecular model of the multiquark systems are the identification of the hadronic molecules and the interaction between two color neutral hadrons. We study the di-hadronic molecular systems with proposed interaction potential a
The electromagnetic properties of baryon octet are studied in the perturbative chiral quark model (PCQM). The relativistic quark wave function is extracted by fitting the theoretical results of the proton charge form factor to experimental data and t
Spectrum of the doubly heavy tetraquarks, $bbbar qbar q$, is studied in a constituent quark model. Four-body problem is solved in a variational method where the real scaling technique is used to identify resonant states above the fall-apart decay thr
We present a path-integral hadronization for doubly heavy baryons. The two heavy quarks in the baryon are approximated as a scalar or axial-vector diquark described by a heavy diquark effective theory. The gluon dynamics are represented by a NJL-Mode