ترغب بنشر مسار تعليمي؟ اضغط هنا

Parity doubling in the high baryon spectrum: near-degenerate three-quark quartets

320   0   0.0 ( 0 )
 نشر من قبل Felipe J. Llanes-Estrada
 تاريخ النشر 2008
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on the first calculation of excited baryons with a chirally symmetric Hamiltonian, modeled after Coulomb gauge QCD (or upgraded from the Cornell meson potential model to a field theory in all of Fock-space) showing the insensitivity to chiral symmetry breaking. As has recently been understood, this leads to doubling between two hadrons of equal spin and opposite parity. As a novelty we show that three-quark, for example Delta states, group into quartets with two states of each parity, all four states having equal angular momentum J. Diagonalizing the chiral charge expressed in terms of quarks we show that the quartet is slightly split into two parity doublets by the tensor force, all splittings decreasing to zero high in the spectrum. Our specific calculation is for the family of maximum-spin excitations of the Delta baryon. We provide a model estimate of the experimental accuracy needed to establish Chiral Symmetry Restoration in the high spectrum. We suggest that a measurement of masses of high-partial wave Delta resonances with an accuracy of 50 MeV should be sufficient to unambiguously establish the approximate degeneracy, and test the concept of running quark mass in the infrared.

قيم البحث

اقرأ أيضاً

We show that three-quark axial currents as required by broken SU(6) spin-flavor symmetry reduce the quark spin contribution to proton spin from $Sigma_p = 1$ (one-quark axial current value) to $Sigma_p = 0.41(12)$ consistent with the empirical value $Sigma_{p, exp} = 0.33(08)$. In the case of the $Delta^+(1232)$ baryon, we find that three-quark axial currents increase the one-quark axial current value $Sigma_{Delta^+} = 3$ to $Sigma_{Delta^+} = 3.87(22)$. We also calculate the quark orbital angular momenta $L_u$ and $L_d$ in the proton and $Delta^+$ and interpret our results in terms of the prolate and oblate geometric shapes of these baryons consistent with their intrinsic quadrupole moments.
Exclusive semileptonic decays of bottom and charm baryons are considered within a relativistic three-quark model with a Gaussian shape for the baryon-three-quark vertex and standard quark propagators. We calculate the baryonic Isgur-Wise functions, decay rates and asymmetry parameters.
Near the critical temperature of the chiral phase transition, a collective excitation due to fluctuation of the chiral order parameter appears. We investigate how it affects the quark spectrum near but above the critical temperature. The calculated s pectral function has many peaks. We show this behavior can be understood in terms of resonance scatterings of a quark off the collective mode.
Combining the recent developments of the observations of $Omega$ sates we calculate the $Omega$ spectrum up to the $N=2$ shell within a nonrelativistic constituent quark potential model. Furthermore, the strong and radiative decay properties for the $Omega$ resonances within the $N=2$ shell are evaluated by using the masses and wave functions obtained from the potential model. It is found that the newly observed $Omega(2012)$ resonance is most likely to be the spin-parity $J^P=3/2^-$ $1P$-wave state $Omega(1^{2}P_{3/2^{-}})$, it also has a large potential to be observed in the $Omega(1672)gamma$ channel. Our calculation shows that the 1$P$-, 1$D$-, and 2$S$-wave $Omega$ baryons have a relatively narrow decay width of less than 50 MeV. Based on the obtained decay properties and mass spectrum, we further suggest optimum channels and mass regions to find the missing $Omega$ resonances via the strong and/or radiative decay processes.
We use a consistent SU(6) extension of the meson-baryon chiral Lagrangian within a coupled channel unitary approach in order to calculate the T-matrix for meson-baryon scattering in s-wave. The building blocks of the scheme are the pion and nucleon o ctets, the rho nonet and the Delta decuplet. We identify poles in this unitary T-matrix and interpret them as resonances. We study here the non exotic sectors with strangeness S=0,-1,-2,-3 and spin J=1/2, 3/2 and 5/2. Many of the poles generated can be associated with known N, Delta, Sigma, Lambda and Xi resonances with negative parity. We show that most of the low-lying three and four star odd parity baryon resonances with spin 1/2 and 3/2 can be related to multiplets of the spin-flavor symmetry group SU(6). This study allows us to predict the spin-parity of the Xi(1620), Xi(1690), Xi(1950), Xi(2250), Omega(2250) and Omega(2380) resonances, which have not been determined experimentally yet.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا