ترغب بنشر مسار تعليمي؟ اضغط هنا

Prediction of hidden charm strange molecular baryon states with heavy quark spin symmetry

70   0   0.0 ( 0 )
 نشر من قبل Juan Nieves Dr.
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We have studied the meson-baryon $S-$wave interaction, using coupled channels, in the isoscalar hidden-charm strange sector and $J^P = 1/2^-,3/2^-$ and $5/2^-$. We impose constraints of heavy quark spin symmetry in the interaction and obtain the non vanishing matrix elements from an extension of the local hidden gauge approach to the charm sector. The ultraviolet divergences are renormalized using the same meson-baryon-loops regulator previously employed in the non-strange hidden charm sector, where a good reproduction of the properties of the newly discovered pentaquark states is obtained. We obtain five states of $1/2^-$, four of $3/2^-$ and one of $5/2^-$, which could be compared in the near future with forthcoming LHCb experiments. The $5/2^-$, three of the $3/2^-$ and another three of the $1/2^-$ resonances are originated from isoscalar $bar D^{(*)}Xi_c^prime$ and $bar D^{(*)}Xi_c^*$ interactions. They should be located just few MeV below the corresponding thresholds (4446, 4513, 4588 and 4655 MeV), and would be SU(3)-siblings of the isospin 1/2 $bar D^{(*)} Sigma_c^{(*)}$ quasi-bound states previously found, and that provided a robust theoretical description of the $P_c(4440)$, $P_c(4457)$ and $P_c(4312)$ LHCb exotic states. The another two $1/2^-$ and $3/2^-$ states obtained in this work are result of the $bar D^{(*)}Xi_c-D^{(*)}_sLambda_c$ coupled-channels isoscalar interaction, are significantly broader than the others, with widths of the order of 15 MeV, being $bar D^{(*)}_sLambda_c$ the dominant decay channel.


قيم البحث

اقرأ أيضاً

64 - Xu Cao , Jian-Ping Dai , Zhi Yang 2020
Recently BESIII collaboration discovered a charged strange hidden-charm state $Z_{cs}$(3985) in the $D_s^-D^{*0} + D_s^{*-}D^{0}$ spectrum. A higher $Z_{cs}$ state coupling to $bar{D}_s^{*-}D^{*0}$ is expected by SU(3)-flavor symmetry, and their bott om partners are anticipated by heavy quark flavor symmetry. Here we study the photoproduction of these exotic states and investigate carefully the background from Pomeron exchange. Our results indicate that the maximal photoproduction cross section of strange partner is around 1 $sim$ 2 orders of magnitude smaller than that of the corresponding non-strange states. The possibility of searching for them in future electron-ion colliders (EIC) is briefly discussed.
We study charmed baryon resonances that are generated dynamically from a coupled-channel unitary approach that implements heavy-quark symmetry. Some states can already be identified with experimental observations, such as $Lambda_c(2595)$, $Lambda_c( 2660)$, $Sigma_c(2902)$ or $Lambda_c(2941)$, while others need a compilation of more experimental data as well as an extension of the model to include higher order contributions. We also compare our model to previous SU(4) schemes.
We investigate heavy quark symmetries for heavy light meson-antimeson systems in a contact-range effective field theory. In the SU(3) light flavor limit, the leading order Lagrangian respecting heavy quark spin symmetry contains four independent coun ter-terms. Neglecting $1/m_Q$ corrections, three of these low energy constants can be determ1ined by theorizing a molecular description of the $X(3872)$ and $Z_b(10610)$ states. Thus, we can predict new hadronic molecules, in particular the isovector charmonium partners of the $Z_b(10610)$ and the $Z_b(10650)$ states. We also discuss hadron molecules composed of a heavy meson and a doubly-heavy baryon, which would be related to the heavy meson-antimeson molecules thanks to the heavy antiquark-diquark symmetry. Finally, we also study the $X(3872) to D^0bar D^0pi^0$ decay, which is not only sensitive to the short distance part of the $X(3872)$ molecular wave function, as the $J/psipipi$ and $J/psi3pi$ $X(3872)$ decay modes are, but it is also affected by the long-distance structure of the resonance. Furthermore, this decay might provide some information on the interaction between the $Dbar D$ charm mesons.
The strong decays of charm-strange baryons up to N=2 shell are studied in a chiral quark model. The theoretical predictions for the well determined charm-strange baryons, $Xi_c^*(2645)$, $Xi_c(2790)$ and $Xi_c(2815)$, are in good agreement with the e xperimental data. This model is also extended to analyze the strong decays of the other newly observed charm-strange baryons $Xi_c(2930)$, $Xi_c(2980)$, $Xi_c(3055)$, $Xi_c(3080)$ and $Xi_c(3123)$. Our predictions are given as follows. (i) $Xi_c(2930)$ might be the first $P$-wave excitation of $Xi_c$ with $J^P=1/2^-$, favors the $|Xi_c ^2P_lambda 1/2^->$ or $|Xi_c ^4P_lambda 1/2^->$ state. (ii) $Xi_c(2980)$ might correspond to two overlapping $P$-wave states $|Xi_c ^2P_rho 1/2^->$ and $|Xi_c ^2P_rho 3/2^->$, respectively. The $Xi_c(2980)$ observed in the $Lambda_c^+bar{K}pi$ final state is most likely to be the $|Xi_c ^2P_rho 1/2^->$ state, while the narrower resonance with a mass $msimeq 2.97$ GeV observed in the $Xi_c^*(2645)pi$ channel favors to be assigned to the $|Xi_c ^2P_rho 3/2^->$ state. (iii) $Xi_c(3080)$ favors to be classified as the $|Xi_c S_{rhorho} 1/2^+>$ state, i.e., the first radial excitation (2S) of $Xi_c$. (iv) $Xi_c(3055)$ is most likely to be the first $D$-wave excitation of $Xi_c$ with $J^P=3/2^+$, favors the $|Xi_c ^2D_{lambdalambda} 3/2^+>$ state. (v) $Xi_c(3123)$ might be assigned to the $|Xi_c ^4D_{lambdalambda} 3/2^+>$, $|Xi_c ^4D_{lambdalambda} 5/2^+>$, or $|Xi_c ^2D_{rhorho} 5/2^+>$ state. As a by-product, we calculate the strong decays of the bottom baryons $Sigma_b^{pm}$, $Sigma_b^{*pm}$ and $Xi_b^*$, which are in good agreement with the recent observations as well.
116 - Th. Mannel , D. Moreno , 2021
We show that one can re-arrange the Heavy Quark Expansion for inclusive weak decays of charmed hadrons in such a way that the resulting expansion is an expansion in $Lambda_{rm QCD} / m_c$ and $alpha_s (m_c)$ with order-one coefficients. Unlike in th e case of the bottom quark, the leading term includes not only the contribution of the free-quark decay, but also a tower of terms related to matrix elements of four quark operators.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا