ترغب بنشر مسار تعليمي؟ اضغط هنا

Tunable spin-spin interactions and entanglement of ions in separate wells

48   0   0.0 ( 0 )
 نشر من قبل Andrew Wilson
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Quantum simulation - the use of one quantum system to simulate a less controllable one - may provide an understanding of the many quantum systems which cannot be modeled using classical computers. Impressive progress on control and manipulation has been achieved for various quantum systems, but one of the remaining challenges is the implementation of scalable devices. In this regard, individual ions trapped in separate tunable potential wells are promising. Here we implement the basic features of this approach and demonstrate deterministic tuning of the Coulomb interaction between two ions, independently controlling their local wells. The scheme is suitable for emulating a range of spin-spin interactions, but to characterize the performance of our setup we select one that entangles the internal states of the two ions with 0.82(1) fidelity. Extension of this building-block to a 2D-network, which ion-trap micro-fabrication processes enable, may provide a new quantum simulator architecture with broad flexibility in designing and scaling the arrangement of ions and their mutual interactions. To perform useful quantum simulations, including those of intriguing condensed-matter phenomena such as the fractional quantum Hall effect, an array of tens of ions might be sufficient.

قيم البحث

اقرأ أيضاً

We propose a new method for generating programmable interactions in one- and two-dimensional trapped-ion quantum simulators. Here we consider the use of optical tweezers to engineer the sound-wave spectrum of trapped ion crystals. We show that this a pproach allows us to tune the interactions and connectivity of the ion qubits beyond the power-law interactions accessible in current setups. We demonstrate the experimental feasibility of our proposal using realistic tweezer settings and experimentally relevant trap parameters to generate the optimal tweezer patterns to create target spin-spin interaction patterns in both one- and two-dimensional crystals. Our approach will advance quantum simulation in trapped-ion platforms as it allows them to realize a broader family of quantum spin Hamiltonians.
We explore spin-orbit thermal entanglement in rare-earth ions, based on a witness obtained from mean energies. The entanglement temperature $T_{E}$, below which entanglement emerges, is found to be thousands of kelvin above room temperature for all l ight rare earths. This demonstrate the robustness to environmental fluctuations of entanglement between internal degrees of freedom of a single ion.
Quantum simulation of spin models can provide insight into complex problems that are difficult or impossible to study with classical computers. Trapped ions are an established platform for quantum simulation, but only systems with fewer than 20 ions have demonstrated quantum correlations. Here we study non-equilibrium, quantum spin dynamics arising from an engineered, homogeneous Ising interaction in a two-dimensional array of $^9$Be$^+$ ions in a Penning trap. We verify entanglement in the form of spin-squeezed states for up to 219 ions, directly observing 4.0$pm$0.9 dB of spectroscopic enhancement. We also observe evidence of non-Gaussian, over-squeezed states in the full counting statistics. We find good agreement with ab-initio theory that includes competition between entanglement and decoherence, laying the groundwork for simulations of the transverse-field Ising model with variable-range interactions, for which numerical solutions are, in general, classically intractable.
59 - M. Gaudiano , O. Osenda , 2007
We consider the two-spin subsystem entanglement for eigenstates of the Hamiltonian [ H= sum_{1leq j< k leq N} (frac{1}{r_{j,k}})^{alpha} {mathbf sigma}_jcdot {mathbf sigma}_k ] for a ring of $N$ spins 1/2 with asssociated spin vector operator $(hba r /2){bf sigma}_j$ for the $j$-th spin. Here $r_{j,k}$ is the chord-distance betwen sites $j$ and $k$. The case $alpha =2$ corresponds to the solvable Haldane-Shastry model whose spectrum has very high degeneracies not present for $alpha eq 2$. Two spin subsystem entanglement shows high sensistivity and distinguishes $alpha =2$ from $alpha eq 2$. There is no entanglement beyond nearest neighbors for all eigenstates when $alpha =2$. Whereas for $alpha eq 2$ one has selective entanglement at any distance for eigenstates of sufficiently high energy in a certain interval of $alpha$ which depends on the energy. The ground state (which is a singlet only for even $N$) does not have entanglement beyond nearest neighbors, and the nearest neighbor entanglement is virtually independent of the range of the interaction controlled by $alpha$.
We investigate the effects of inhomogeneities on spin entanglement in many-electron systems from an ab-initio approach. The key quantity in our approach is the local spin entanglement length, which is derived from the local concurrence of the electro nic system. Although the concurrence for an interacting systems is a highly nonlocal functional of the density, it does have a simple, albeit approximate expression in terms of Kohn-Sham orbitals. We show that the electron localization function -- well known in quantum chemistry as a descriptor of atomic shells and molecular bonds -- can be reinterpreted in terms of the ratio of the local entanglement length of the inhomogeneous system to the entanglement length of a homogenous system at the same density. We find that the spin entanglement is remarkably enhanced in atomic shells and molecular bonds.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا