ﻻ يوجد ملخص باللغة العربية
We explore spin-orbit thermal entanglement in rare-earth ions, based on a witness obtained from mean energies. The entanglement temperature $T_{E}$, below which entanglement emerges, is found to be thousands of kelvin above room temperature for all light rare earths. This demonstrate the robustness to environmental fluctuations of entanglement between internal degrees of freedom of a single ion.
Contrary to the well known spin qubits, rare-earth qubits are characterized by a strong influence of crystal field due to large spin-orbit coupling. At low temperature and in the presence of resonance microwaves, it is the magnetic moment of the crys
We demonstrate optical probing of spectrally resolved single Nd rare-earth ions in yttrium orthovanadate. The ions are coupled to a photonic crystal resonator and show strong enhancement of the optical emission rate via the Purcell effect, resulting
We present a quantum repeater scheme that is based on individual erbium and europium ions. Erbium ions are attractive because they emit photons at telecommunication wavelength, while europium ions offer exceptional spin coherence for long-term storag
We describe a method for creating small quantum processors in a crystal stoichiometric in an optically active rare earth ion. The crystal is doped with another rare earth, creating an ensemble of identical clusters of surrounding ions, whose optical
Spin-orbit coupling is an important ingredient in many spin liquid candidate materials, especially among the rare-earth magnets and Kitaev materials. We explore the rare-earth chalcogenides NaYbS$_2$ where the Yb$^{3+}$ ions form a perfect triangular