ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum spin dynamics and entanglement generation with hundreds of trapped ions

88   0   0.0 ( 0 )
 نشر من قبل Justin Bohnet
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Quantum simulation of spin models can provide insight into complex problems that are difficult or impossible to study with classical computers. Trapped ions are an established platform for quantum simulation, but only systems with fewer than 20 ions have demonstrated quantum correlations. Here we study non-equilibrium, quantum spin dynamics arising from an engineered, homogeneous Ising interaction in a two-dimensional array of $^9$Be$^+$ ions in a Penning trap. We verify entanglement in the form of spin-squeezed states for up to 219 ions, directly observing 4.0$pm$0.9 dB of spectroscopic enhancement. We also observe evidence of non-Gaussian, over-squeezed states in the full counting statistics. We find good agreement with ab-initio theory that includes competition between entanglement and decoherence, laying the groundwork for simulations of the transverse-field Ising model with variable-range interactions, for which numerical solutions are, in general, classically intractable.

قيم البحث

اقرأ أيضاً

Ultranarrow-linewidth atoms coupled to a lossy optical cavity mode synchronize, i.e. develop correlations, and exhibit steady-state superradiance when continuously repumped. This type of system displays rich collective physics and promises metrologic al applications. These features inspire us to investigate if analogous spin synchronization is possible in a different platform that is one of the most robust and controllable experimental testbeds currently available: ion-trap systems. We design a system with a primary and secondary species of ions that share a common set of normal modes of vibration. In analogy to the lossy optical mode, we propose to use a lossy normal mode, obtained by sympathetic cooling with the secondary species of ions, to mediate spin synchronization in the primary species of ions. Our numerical study shows that spin-spin correlations develop, leading to a macroscopic collective spin in steady-state. We propose an experimental method based on Ramsey interferometry to detect signatures of this collective spin; we predict that correlations prolong the visibility of Ramsey fringes, and that population statistics at the end of the Ramsey sequence can be used to directly infer spin-spin correlations.
Quantum simulation using synthetic systems is a promising route to solve outstanding quantum many-body problems in regimes where other approaches, including numerical ones, fail. Many platforms are being developed towards this goal, in particular bas ed on trapped ions, superconducting circuits, neutral atoms or molecules. All of which face two key challenges: (i) scaling up the ensemble size, whilst retaining high quality control over the parameters and (ii) certifying the outputs for these large systems. Here, we use programmable arrays of individual atoms trapped in optical tweezers, with interactions controlled by laser-excitation to Rydberg states to implement an iconic many-body problem, the antiferromagnetic 2D transverse field Ising model. We push this platform to an unprecedented regime with up to 196 atoms manipulated with high fidelity. We probe the antiferromagnetic order by dynamically tuning the parameters of the Hamiltonian. We illustrate the versatility of our platform by exploring various system sizes on two qualitatively different geometries, square and triangular arrays. We obtain good agreement with numerical calculations up to a computationally feasible size (around 100 particles). This work demonstrates that our platform can be readily used to address open questions in many-body physics.
Two component (spinor) Bose-Einstein condensates (BECs) are considered as the nodes of an interconnected quantum network. Unlike standard single-system qubits, in a BEC the quantum information is duplicated in a large number of identical bosonic part icles, thus can be considered to be a macroscopic qubit. One of the difficulties with such a system is how to effectively interact such qubits together in order to transfer quantum information and create entanglement. Here we propose a scheme of cavities containing spinor BECs coupled by optical fiber in order to achieve this task. We discuss entanglement generation and quantum state transfer between nodes using such macroscopic BEC qubits.
We propose a new method for generating programmable interactions in one- and two-dimensional trapped-ion quantum simulators. Here we consider the use of optical tweezers to engineer the sound-wave spectrum of trapped ion crystals. We show that this a pproach allows us to tune the interactions and connectivity of the ion qubits beyond the power-law interactions accessible in current setups. We demonstrate the experimental feasibility of our proposal using realistic tweezer settings and experimentally relevant trap parameters to generate the optimal tweezer patterns to create target spin-spin interaction patterns in both one- and two-dimensional crystals. Our approach will advance quantum simulation in trapped-ion platforms as it allows them to realize a broader family of quantum spin Hamiltonians.
Quantum entanglement has been generated and verified in cold-atom experiments and used to make atom-interferometric measurements below the shot-noise limit. However, current state-of-the-art cold-atom devices exploit separable (i.e. unentangled) atom ic states. This Perspective piece asks the question: can entanglement usefully improve cold-atom sensors, in the sense that it gives new sensing capabilities unachievable with current state-of-the-art devices? We briefly review the state-of-the-art in precision cold-atom sensing, focussing on clocks and inertial sensors, identifying the potential benefits entanglement could bring to these devices, and the challenges that need to be overcome to realize these benefits. We survey demonstrated methods of generating metrologically-useful entanglement in cold-atom systems, note their relative strengths and weaknesses, and assess their prospects for near-to-medium term quantum-enhanced cold-atom sensing.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا