ﻻ يوجد ملخص باللغة العربية
The strongest interaction between microscopic spins in magnetic materials is the exchange interaction $J_text{ex}$. Therefore, ultrafast control of $J_text{ex}$ holds the promise to control spins on ultimately fast timescales. We demonstrate that time-periodic modulation of the electronic structure by electric fields can be used to reversibly control $J_text{ex}$ on ultrafast timescales in extended antiferromagnetic Mott insulators. In the regime of weak driving strength, we find that $J_text{ex}$ can be enhanced and reduced for frequencies below and above the Mott gap, respectively. Moreover, for strong driving strength, even the sign of $J_text{ex}$ can be reversed and we show that this causes time reversal of the associated quantum spin dynamics. These results suggest wide applications, not only to control magnetism in condensed matter systems, for example, via the excitation of spin resonances, but also to assess fundamental questions concerning the reversibility of the quantum many-body dynamics in cold atom systems.
We investigate how fast and how effective photocarrier excitation can modify the exchange interaction $J_mathrm{ex}$ in the prototype Mott-Hubbard insulator. We demonstrate an ultrafast quenching of $J_mathrm{ex}$ both by evaluating exchange integral
In recent years, the optical control of exchange interactions has emerged as an exciting new direction in the study of the ultrafast optical control of magnetic order. Here we review recent theoretical works on antiferromagnetic systems, devoted to i
In order to have a better understanding of ultrafast electrical control of exchange interactions in multi-orbital systems, we study a two-orbital Hubbard model at half filling under the action of a time-periodic electric field. Using suitable project
Most available theories for correlated electron transport are based on the Hubbard Hamiltonian. In this effective theory, renormalized hopping and interaction parameters only implicitly incorporate the coupling of correlated charge carriers to micros
We observe and explain theoretically a dramatic evolution of the Dzyaloshinskii-Moriya interaction in the series of isostructural weak ferromagnets, MnCO$_3$, FeBO$_3$, CoCO$_3$ and NiCO$_3$. The sign of the interaction is encoded in the phase of x-r