ﻻ يوجد ملخص باللغة العربية
In recent years, the optical control of exchange interactions has emerged as an exciting new direction in the study of the ultrafast optical control of magnetic order. Here we review recent theoretical works on antiferromagnetic systems, devoted to i) simulating the ultrafast control of exchange interactions, ii) modeling the strongly nonequilibrium response of the magnetic order and iii) the relation with relevant experimental works developed in parallel. In addition to the excitation of spin precession, we discuss examples of rapid cooling and the control of ultrafast coherent longitudinal spin dynamics in response to femtosecond optically induced perturbations of exchange interactions. These elucidate the potential for exploiting the control of exchange interactions to find new scenarios for both faster and more energy-efficient manipulation of magnetism.
The strongest interaction between microscopic spins in magnetic materials is the exchange interaction $J_text{ex}$. Therefore, ultrafast control of $J_text{ex}$ holds the promise to control spins on ultimately fast timescales. We demonstrate that tim
We investigate how fast and how effective photocarrier excitation can modify the exchange interaction $J_mathrm{ex}$ in the prototype Mott-Hubbard insulator. We demonstrate an ultrafast quenching of $J_mathrm{ex}$ both by evaluating exchange integral
We report a detailed study of the magnetization modulus as a function of temperature and applied magnetic field under varying angle in Sr$_{4}$Ru$_{3}$O$_{10}$ close to the metamagnetic transition at $H_{c}backsimeq 2.5,$T for $H perp c$. We confirm
Directly modifying spin exchange energies in a magnetic material with light can enable ultrafast control of its magnetic states. Current approaches rely on tuning charge hopping amplitudes that mediate exchange by optically exciting either virtual or
Femtosecond time-resolved x-ray diffraction is employed to study the dynamics of the periodic lattice distortion (PLD) associated with the charge-density-wave (CDW) in K0.3MoO3. Using a multi-pulse scheme we show the ability to extend the lifetime of