ترغب بنشر مسار تعليمي؟ اضغط هنا

Band filling control of the Dzyaloshinskii-Moriya interaction in weakly ferromagnetic insulators

101   0   0.0 ( 0 )
 نشر من قبل Guillaume Beutier
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We observe and explain theoretically a dramatic evolution of the Dzyaloshinskii-Moriya interaction in the series of isostructural weak ferromagnets, MnCO$_3$, FeBO$_3$, CoCO$_3$ and NiCO$_3$. The sign of the interaction is encoded in the phase of x-ray magnetic diffraction amplitude, observed through interference with resonant quadrupole scattering. We find very good quantitative agreement with first-principles electronic structure calculations, reproducing both sign and magnitude through the series, and propose a simplified `toy model to explain the change in sign with 3 d shell filling. The model gives a clue for qualitative understanding of the evolution of the DMI in Mott and charge transfer insulators.



قيم البحث

اقرأ أيضاً

193 - A.S. Moskvin 2019
We present an overview of the microscopic theory of the Dzyaloshinskii-Moriya (DM) coupling in strongly correlated 3d compounds. Most attention in the paper centers around the derivation of the Dzyaloshinskii vector, its value, orientation, and sense (sign) under different types of the (super)exchange interaction and crystal field. We consider both the Moriya mechanism of the antisymmetric interaction and novel contributions, in particular, that of spin-orbital coupling on the intermediate ligand ions. We have predicted a novel magnetic phenomenon, {it weak ferrimagnetism} in mixed weak ferromagnets with competing signs of the Dzyaloshinskii vectors. We revisit a problem of the DM coupling for a single bond in cuprates specifying the local spin-orbital contributions to Dzyaloshinskii vector focusing on the oxygen term. We predict a novel puzzling effect of the on-site staggered spin polarization to be a result of the on-site spin-orbital coupling and the the cation-ligand spin density transfer. The intermediate ligand NMR measurements are shown to be an effective tool to inspect the effects of the DM coupling in an external magnetic field. We predict the effect of a $strong$ oxygen weak antiferromagnetism in edge-shared CuO$_2$ chains due to uncompensated oxygen Dzyaloshinskii vectors. We revisit the effects of symmetric spin anisotropy directly induced by the DM coupling. A critical analysis will be given of different approaches to exchange-relativistic coupling based on the cluster and the DFT based calculations. Theoretical results are applied to different classes of 3d compounds from conventional weak ferromagnets ($alpha$-Fe$_2$O$_3$, FeBO$_3$, FeF$_3$, RFeO$_3$, RCrO$_3$,.. ) to unconventional systems such as weak ferrimagnets (e.g., RFe$_{1-x}$Cr$_x$O$_3$), helimagnets (e.g., CsCuCl$_3$), and parent cuprates (La$_2$CuO$_4$,...).
In this work, we address the ground state properties of the anisotropic spin-1/2 Heisenberg XYZ chain under the interplay of magnetic fields and the Dzyaloshinskii-Moriya (DM) interaction which we interpret as an electric field. The identification of the regions of enhanced sensitivity determines criticality in this model. We calculate the Wigner-Yanase skew information (WYSI) as a coherence witness of an arbitrary two-qubit state under specific measurement bases. The WYSI is demonstrated to be a good indicator for detecting the quantum phase transitions. The finite-size scaling of coherence susceptibility is investigated. We find that the factorization line in the antiferromagnetic phase becomes the factorization volume in the gapless chiral phase induced by DM interactions, implied by the vanishing concurrence for a wide range of field. We also present the phase diagram of the model with three phases: antiferromagnetic, paramagnetic, and chiral, and point out a few common mistakes in deriving the correlation functions for the systems with broken reflection symmetry.
Localized magnons states, due to flat bands in the spectrum, is an intensely studied phenomenon and can be found in many frustrated magnets of different spatial dimensionality. The presence of Dzyaloshinskii-Moriya (DM) interactions may change radica lly the behavior in such systems. In this context, we study a paradigmatic example of a one-dimensional frustrated antiferromagnet, the sawtooth chain in the presence of DM interactions. Using both path integrals methods and numerical Density Matrix Renormalization Group, we revisit the physics of localized magnons and determine the consequences of the DM interaction on the ground state. We have studied the spin current behavior, finding three different regimes. First, a Luttinger-liquid regime where the spin current shows a step behavior as a function of parameter $D$, at a low magnetic field. Increasing the magnetic field, the system is in the Meissner phase at the $m = 1/2$ plateau, where the spin current is proportional to the DM parameter. Finally, further increasing the magnetic field and for finite $D$ there is a small stiffness regime where the spin current shows, at fixed magnetization, a jump to large values at $D = 0$, a phenomenon also due to the flat band.
Electronic properties of the sodium cobaltate NaxCoO2 are systematically studied through a precise control of band filling. Resistivity, magnetic susceptibility and specific heat measurements are carried out on a series of high-quality polycrystallin e samples prepared at 200 C with Na content in a wide range of 0.35 =< x =< 0.70. It is found that dramatic changes in electronic properties take place at a critical Na concentration x* that lies between 0.58 and 0.59, which separates a Pauli paramagnetic and a Curie-Weiss metals. It is suggested that at x* the Fermi level touches the bottom of the a1g band at the gamma point, leading to a crucial change in the density of states across x* and the emergence of a small electron pocket around the gamma point for x > x*.
Magnetic structures are investigated by means of neutron diffraction to shine a light on the intricate details that are believed to be key to understanding the magnetoelectric effect in LiCoPO$_4$ . At zero field, a spontaneous spin canting of $varph i = 7(1)^{circ}$ is found. The spins tilt away from the easy $b$-axis toward $c$. Symmetry considerations lead to the magnetic point group $m_z$, which is consistent with the previously observed magnetoelectric tensor form and weak ferromagnetic moment along $b$. For magnetic fields applied along $a$, the induced ferromagnetic moment couples via the Dzyaloshinskii-Moriya interaction to yield an additional field-induced spin canting. An upper limit to the size of the interaction is estimated from the canting angle.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا