ترغب بنشر مسار تعليمي؟ اضغط هنا

Optical control of competing exchange interactions and coherent spin-charge coupling in two-orbital Mott insulators

273   0   0.0 ( 0 )
 نشر من قبل Marion Barbeau
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In order to have a better understanding of ultrafast electrical control of exchange interactions in multi-orbital systems, we study a two-orbital Hubbard model at half filling under the action of a time-periodic electric field. Using suitable projection operators and a generalized time-dependent canonical transformation, we derive an effective Hamiltonian which describes two different regimes. First, for a wide range of non-resonant frequencies, we find a change of the bilinear Heisenberg exchange $J_{textrm{ex}}$ that is analogous to the single-orbital case. Moreover we demonstrate that also the additional biquadratic exchange interaction $B_{textrm{ex}}$ can be enhanced, reduced and even change sign depending on the electric field. Second, for special driving frequencies, we demonstrate a novel spin-charge coupling phenomenon enabling coherent transfer between spin and charge degrees of freedom of doubly ionized states. These results are confirmed by an exact time-evolution of the full two-orbital Mott-Hubbard Hamiltonian.



قيم البحث

اقرأ أيضاً

We study the effect of a magnetic field on the low energy description of Mott insulators with strong spin-orbit (SO) coupling. In contrast to the standard case of the Hubbard model without SO coupling, we show that Peierls phases can modulate the mag netic exchange at leading order in the interaction. Our mechanism crucially depends on the existence of distinct exchange paths between neighboring magnetic ions enclosing a well-defined area. Thus it will generically be present in any solid state realisation of the Kitaev model and its extensions. We explicitly calculate the variation of the exchange constants of the so-called $JKGamma$ model as a function of the magnetic flux. We discuss experimental implications of our findings for various settings of candidate Kitaev spin liquids.
The strongest interaction between microscopic spins in magnetic materials is the exchange interaction $J_text{ex}$. Therefore, ultrafast control of $J_text{ex}$ holds the promise to control spins on ultimately fast timescales. We demonstrate that tim e-periodic modulation of the electronic structure by electric fields can be used to reversibly control $J_text{ex}$ on ultrafast timescales in extended antiferromagnetic Mott insulators. In the regime of weak driving strength, we find that $J_text{ex}$ can be enhanced and reduced for frequencies below and above the Mott gap, respectively. Moreover, for strong driving strength, even the sign of $J_text{ex}$ can be reversed and we show that this causes time reversal of the associated quantum spin dynamics. These results suggest wide applications, not only to control magnetism in condensed matter systems, for example, via the excitation of spin resonances, but also to assess fundamental questions concerning the reversibility of the quantum many-body dynamics in cold atom systems.
96 - T. Mizokawa , D. I. Khomskii , 1999
We have investigated possible spin and charge ordered states in 3d transition-metal oxides with small or negative charge-transfer energy, which can be regarded as self-doped Mott insulators, using Hartree-Fock calculations on d-p-type lattice models. It was found that an antiferromagnetic state with charge ordering in oxygen 2p orbitals is favored for relatively large charge-transfer energy and may be relevant for PrNiO$_3$ and NdNiO$_3$. On the other hand, an antiferromagnetic state with charge ordering in transition-metal 3$d$ orbitals tends to be stable for highly negative charge-transfer energy and can be stabilized by the breathing-type lattice distortion; this is probably realized in YNiO$_3$.
A hole injected into a Mott insulator will gain an internal structure as recently identified by exact numerics, which is characterized by a nontrivial quantum number whose nature is of central importance in understanding the Mott physics. In this wor k, we show that a spin texture associated with such an internal degree of freedom can explicitly manifest after the spin degeneracy is lifted by a emph{weak} Rashba spin-orbit coupling (SOC). It is described by an emergent angular momentum $J_{z}=pm3/2$ as shown by both exact diagonalization (ED) and variational Monte Carlo (VMC) calculations, which are in good agreement with each other at a finite size. In particular, as the internal structure such a spin texture is generally present in the hole composite even at high excited energies, such that a corresponding texture in momentum space, extending deep inside the Brillouin zone, can be directly probed by the spin-polarized angle-resolved photoemission spectroscopy (ARPES). This is in contrast to a Landau quasiparticle under the SOC, in which the spin texture induced by SOC will not be protected once the excited energy is larger than the weak SOC coupling strength, away from the Fermi energy. We point out that the spin texture due to the SOC should be monotonically enhanced with reducing spin-spin correlation length in the superconducting/pseudogap phase at finite doping. A brief discussion of a recent experiment of the spin-polarized ARPES will be made.
213 - Giniyat Khaliullin 2005
Basic mechanisms controlling orbital order and orbital fluctuations in transition metal oxides are discussed. The lattice driven classical orbital picture, e.g. like in manganites LaMnO$_3$, is contrasted to the quantum behavior of orbitals in frustr ated superexchange models as realised in pseudocubic titanites ATiO$_3$ and vanadates AVO$_3$. In YVO$_3$, the lattice and superexchange effects strongly compete -- this explains the extreme sensitivity of magnetic states to temperature and doping. Lifting the $t_{2g}$ orbital degeneracy by a relativistic spin-orbital coupling is considered on example of the layered cobaltates. We find that the spin-orbital mixing of low-energy states leads to unusual magnetic correlations in a triangular lattice of the CoO$_2$ parent compound. Finally, the magnetism of sodium-rich compounds Na$_{1-x}$CoO$_2$ is discussed in terms of a spin/orbital polaronic liquid.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا