ترغب بنشر مسار تعليمي؟ اضغط هنا

Radio Frequency Models of Novae in eruption. I. The Free-Free Process in Bipolar Morphologies

36   0   0.0 ( 0 )
 نشر من قبل Val\\'erio A. R. M. Ribeiro
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Observations of novae at radio frequencies provide us with a measure of the total ejected mass, density profile and kinetic energy of a nova eruption. The radio emission is typically well characterized by the free-free emission process. Most models to date have assumed spherical symmetry for the eruption, although it has been known for as long as there have been radio observations of these systems, that spherical eruptions are to simplistic a geometry. In this paper, we build bipolar models of the nova eruption, assuming the free-free process, and show the effects of varying different parameters on the radio light curves. The parameters considered include the ratio of the minor- to major-axis, the inclination angle and shell thickness (further parameters are provided in the appendix). We also show the uncertainty introduced when fitting spherical model synthetic light curves to bipolar model synthetic light curves. We find that the optically thick phase rises with the same power law ($S_{ u} propto t^2$) for both the spherical and bipolar models. In the bipolar case there is a plateau phase -- depending on the thickness of the shell as well as the ratio of the minor- to major-axis -- before the final decline, that follows the same power law ($S_{ u} propto t^{-3}$) as in the spherical case. Finally, fitting spherical models to the bipolar model synthetic light curves requires, in the worst case scenario, doubling the ejected mass, more than halving the electron temperature and reducing the shell thickness by nearly a factor of 10. This implies that in some systems we have been over predicting the ejected masses and under predicting the electron temperature of the ejecta.

قيم البحث

اقرأ أيضاً

The main goal is to study the dynamics of the gravitationally stratified, field-free cavities in the solar atmosphere, located under small-scale, cylindrical magnetic canopies, in response to explosive events in the lower-lying regions (due to granul ation, small-scale magnetic reconnection, etc.). We derive the two-dimensional Klein-Gordon equation for isothermal density perturbations in cylindrical coordinates. The equation is first solved by a standard normal mode analysis in order to obtain the free oscillation spectrum of the cavity. Then, the equation is solved in the case of impulsive forcing associated to a pressure pulse specified in the lower-lying regions. The normal mode analysis shows that the entire cylindrical cavity of granular dimensions tends to oscillate with frequencies of 5-8 mHz and also with the atmospheric cut-off frequency. Furthermore, the passage of a pressure pulse, excited in the convection zone, sets up a wake in the cavity oscillating with the same cut-off frequency. The wake oscillations can resonate with the free oscillation modes, which leads to an enhanced observed oscillation power. The resonant oscillations of these cavities explain the observed power halos near magnetic network cores and active regions.
The impact of nova eruptions on the long-term evolution of Cataclysmic Variables(CVs) is one of the least understood and intensively discussed topics in the field. Acrucial ingredient to improve with this would be to establish a large sample of post- novae with known properties, starting with the most easily accessible one, the orbitalperiod. Here we report new orbital periods for six faint novae: X Cir (3.71 h), ILNor (1.62 h), DY Pup (3.35 h), V363 Sgr (3.03 h), V2572 Sgr (3.75 h) and CQ Vel(2.7 h). We furthermore revise the periods for the old novae OY Ara, RS Car, V365Car, V849 Oph, V728 Sco, WY Sge, XX Tau and RW UMi. Using these new dataand critically reviewing the trustworthiness of reported orbital periods of old novae inthe literature, we establish an updated period distribution. We employ a binary-starevolution code to calculate a theoretical period distribution using both an empiricaland the classical prescription for consequential angular momentum loss. In comparisonwith the observational data we find that both models especially fail to reproduce thepeak in the 3 - 4 h range, suggesting that the angular momentum loss for CVs abovethe period gap is not totally understood.
We describe radio observations at 244 and 610 MHz of a sample of 20 luminous and ultra-luminous IRAS galaxies. These are a sub-set of a sample of 31 objects that have well-measured radio spectra up to at least 23 GHz. The radio spectra of these objec ts below 1.4 GHz show a great variety of forms and are rarely a simple power-law extrapolation of the synchrotron spectra at higher frequencies. Most objects of this class have spectral turn-overs or bends in their radio spectra. We interpret these spectra in terms of free-free absorption in the starburst environment. Several objects show radio spectra with two components having free-free turn-overs at different frequencies (including Arp 220 and Arp 299), indicating that synchrotron emission originates from regions with very different emission measures. In these sources, using a simple model for the supernova rate, we estimate the time for which synchrotron emission is subject to strong free-free absorption by ionized gas, and compare this to expected HII region lifetimes. We find that the ionized gas lifetimes are an order of magnitude larger than plausible lifetimes for individual HII regions. We discuss the implications of this result and argue that those sources which have a significant radio component with strong free-free absorption are those in which the star formation rate is still increasing with time. We note that if ionization losses modify the intrinsic synchrotron spectrum so that it steepens toward higher frequencies, the often observed deficit in fluxes higher than ~10 GHz would be much reduced.
Thermal plasma of solar atmosphere includes a wide range of temperatures. This plasma is often quantified, both in observations and models, by a differential emission measure (DEM). DEM is a distribution of the thermal electron density square over te mperature. In observations, the DEM is computed along a line of sight, while in the modeling -- over an elementary volume element (voxel). This description of the multi-thermal plasma is convenient and widely used in the analysis and modeling of extreme ultraviolet emission (EUV), which has an optically thin character. However, there is no corresponding treatment in the radio domain, where optical depth of emission can be large, more than one emission mechanism are involved, and plasma effects are important. Here, we extend the theory of the thermal gyroresonance and free-free radio emissions in the classical mono-temperature Maxwellian plasma to the case of a multi-temperature plasma. The free-free component is computed using the DEM and temperature-dependent ionization states of coronal ions, contributions from collisions of electrons with neutral atoms, exact Gaunt factor, and the magnetic field effect. For the gyroresonant component, another measure of the multi-temperature plasma is used which describes the distribution of the thermal electron density over temperature. We give representative examples demonstrating important changes in the emission intensity and polarization due to considered effects. The theory is implemented in available computer code.
The thermal radio and sub-mm emission from the winds of massive stars is investigated and the contribution to the emission due to the stellar wind acceleration region and clumping of the wind is quantified. Building upon established theory, a method for calculating the thermal radio and sub-mm emission using results for a line-driven stellar outflow according to Castor, Abbott & Klein (1975) is presented. The results show strong variation of the spectral index for 10 2 GHz < { u} < 10 4 GHz. This corresponds both to the wind acceleration region and clumping of the wind, leading to a strong dependence on the wind velocity law and clumping parameters. The Atacama Large Millimeter/sub-mm Array (ALMA) is the first observatory to have both the spectral window and sensitivity to observe at the high frequencies required to probe the acceleration regions of massive stars. The deviations in the predicted flux levels as a result of the inclusion of the wind acceleration region and clumping are sufficient to be detected by ALMA, through deviations in the spectral index in different portions of the radio/sub-mm spectra of massive stars, for a range of reasonable mass-loss rates and distances. Consequently both mechanisms need to be included to fully understand the mass-loss rates of massive stars.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا