ترغب بنشر مسار تعليمي؟ اضغط هنا

Sub-mm free-free emission from the winds of massive stars in the age of ALMA

56   0   0.0 ( 0 )
 نشر من قبل Simon Daley-Yates
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The thermal radio and sub-mm emission from the winds of massive stars is investigated and the contribution to the emission due to the stellar wind acceleration region and clumping of the wind is quantified. Building upon established theory, a method for calculating the thermal radio and sub-mm emission using results for a line-driven stellar outflow according to Castor, Abbott & Klein (1975) is presented. The results show strong variation of the spectral index for 10 2 GHz < { u} < 10 4 GHz. This corresponds both to the wind acceleration region and clumping of the wind, leading to a strong dependence on the wind velocity law and clumping parameters. The Atacama Large Millimeter/sub-mm Array (ALMA) is the first observatory to have both the spectral window and sensitivity to observe at the high frequencies required to probe the acceleration regions of massive stars. The deviations in the predicted flux levels as a result of the inclusion of the wind acceleration region and clumping are sufficient to be detected by ALMA, through deviations in the spectral index in different portions of the radio/sub-mm spectra of massive stars, for a range of reasonable mass-loss rates and distances. Consequently both mechanisms need to be included to fully understand the mass-loss rates of massive stars.

قيم البحث

اقرأ أيضاً

Binary interactions dominate the evolution of massive stars, but their role is less clear for low- and intermediate-mass stars. The evolution of a spherical wind from an asymptotic giant branch (AGB) star into a nonspherical planetary nebula (PN) cou ld be due to binary interactions. We observed a sample of AGB stars with the Atacama Large Millimeter/submillimeter Array (ALMA) and found that their winds exhibit distinct nonspherical geometries with morphological similarities to planetary nebulae (PNe). We infer that the same physics shapes both AGB winds and PNe; additionally, the morphology and AGB mass-loss rate are correlated. These characteristics can be explained by binary interaction. We propose an evolutionary scenario for AGB morphologies that is consistent with observed phenomena in AGB stars and PNe.
We investigate the effects of stellar limb-darkening and photospheric perturbations for the onset of wind structure arising from the strong, intrinsic line-deshadowing instability (LDI) of a line-driven stellar wind. A linear perturbation analysis sh ows that including limb-darkening reduces the stabilizing effect of the diffuse radiation, leading to a net instability growth rate even at the wind base. Numerical radiation-hydrodynamics simulations of the non-linear evolution of this instability then show that, in comparison with previous models assuming a uniformly bright star without base perturbations, wind structure now develops much closer ($r la 1.1 R_star$) to the photosphere. This is in much better agreement with observations of O-type stars, which typically indicate the presence of strong clumping quite near the wind base.
Cool, evolved stars have copious, enriched winds. The structure of these winds and the way they are accelerated is not well known. We need to improve our understanding by studying the dynamics from the pulsating stellar surface to about 10 stellar ra dii, where radiation pressure on dust is fully effective. Some red supergiants have highly asymmetric nebulae, implicating additional forces. We retrieved ALMA Science Verification data providing images of sub-mm line and continuum emission from VY CMa. This enables us to locate water masers with milli-arcsec precision and resolve the dusty continuum. The 658-, 321- and 325-GHz masers lie in irregular, thick shells at increasing distances from the centre of expansion. For the first time this is confirmed as the stellar position, coinciding with a compact peak offset to the NW of the brightest continuum emission. The maser shells (and dust formation zone) overlap but avoid each other on tens-au scales. Their distribution is broadly consistent with excitation models but the conditions and kinematics appear to be complicated by wind collisions, clumping and asymmetries.
Colliding winds of massive star binary systems are considered as potential sites of non-thermal high-energy photon production. This is motivated merely by the detection of synchrotron radio emission from the expected colliding wind location. Here we investigate the properties of high-energy photon production in colliding winds of long-period WR+OB-systems. We found that in the dominating leptonic radiation process anisotropy and Klein-Nishina effects may yield spectral and variability signatures in the gamma-ray domain at or above the sensitivity of current or upcoming gamma-ray telescopes. Analytical formulae for the steady-state particle spectra are derived assuming diffusive particle acceleration out of a pool of thermal wind particles, and taking into account adiabatic and all relevant radiative losses. For the first time we include their advection/convection in the wind collision zone, and distinguish two regions within this extended region: the acceleration region where spatial diffusion is superior to convective/advective motion, and the convection region defined by the convection time shorter than the diffusion time scale. The calculation of the Inverse Compton radiation uses the full Klein-Nishina cross section, and takes into account the anisotropic nature of the scattering process. This leads to orbital flux variations by up to several orders of magnitude which may, however, be blurred by the geometry of the system. The calculations are applied to the typical WR+OB-systems WR 140 and WR 147 to yield predictions of their expected spectral and temporal characteristica and to evaluate chances to detect high-energy emission with the current and upcoming gamma-ray experiments. (abridged)
We present observations performed with the Green Bank Telescope at 1.4 and 5 GHz of three strips coincident with the anomalous microwave emission features previously identified in the Perseus molecular cloud at 33 GHz with the Very Small Array. With these observations we determine the level of the low frequency (~1 - 5 GHz) emission. We do not detect any significant extended emission in these regions and we compute conservative 3sigma upper limits on the fraction of free-free emission at 33 GHz of 27%, 12%, and 18% for the three strips, indicating that the level of the emission at 1.4 and 5 GHz cannot account for the emission observed at 33 GHz. Additionally, we find that the low frequency emission is not spatially correlated with the emission observed at 33 GHz. These results indicate that the emission observed in the Perseus molecular cloud at 33 GHz, is indeed in excess over the low frequency emission, hence confirming its anomalous nature.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا