ﻻ يوجد ملخص باللغة العربية
Thermal plasma of solar atmosphere includes a wide range of temperatures. This plasma is often quantified, both in observations and models, by a differential emission measure (DEM). DEM is a distribution of the thermal electron density square over temperature. In observations, the DEM is computed along a line of sight, while in the modeling -- over an elementary volume element (voxel). This description of the multi-thermal plasma is convenient and widely used in the analysis and modeling of extreme ultraviolet emission (EUV), which has an optically thin character. However, there is no corresponding treatment in the radio domain, where optical depth of emission can be large, more than one emission mechanism are involved, and plasma effects are important. Here, we extend the theory of the thermal gyroresonance and free-free radio emissions in the classical mono-temperature Maxwellian plasma to the case of a multi-temperature plasma. The free-free component is computed using the DEM and temperature-dependent ionization states of coronal ions, contributions from collisions of electrons with neutral atoms, exact Gaunt factor, and the magnetic field effect. For the gyroresonant component, another measure of the multi-temperature plasma is used which describes the distribution of the thermal electron density over temperature. We give representative examples demonstrating important changes in the emission intensity and polarization due to considered effects. The theory is implemented in available computer code.
General relativistic force-free electrodynamics is one possible plasma-limit employed to analyze energetic outflows in which strong magnetic fields are dominant over all inertial phenomena. The amazing images of black hole shadows from the galactic c
Violent solar eruptions are often accompanied by relativistic beams of charged particles. In the solar context, they are referred to as SPEs (Solar Particle Events) and are known to generate a characteristic swept-frequency radio burst. Due to their
We derive self-consistent formalism for the description of multi-component partially ionized solar plasma, by means of the coupled equations for the charged and neutral components for an arbitrary number of chemical species, and the radiation field.
Observed X-ray spectra of hot gas in clusters, groups, and individual galaxies are commonly fit with a single-temperature thermal plasma model even though the beam may contain emission from components with different temperatures. Recently, Mazzotta e
We present a lattice Boltzmann algorithm based on an underlying free energy that allows the simulation of the dynamics of a multicomponent system with an arbitrary number of components. The thermodynamic properties, such as the chemical potential of