ترغب بنشر مسار تعليمي؟ اضغط هنا

Direct observation of the ground state of a 1/3 quantum magnetization plateau in SrMn$_3$P$_4$O$_{14}$ using neutron diffraction measurements

211   0   0.0 ( 0 )
 نشر من قبل Masashi Hase
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We can directly investigate the ground state in magnetization-plateau fields (plateau ground state) using neutron diffraction measurements. We performed neutron diffraction measurements on the spin-5/2 trimer substance SrMn$_3$P$_4$O$_{14}$ in magnetization-plateau fields. The integrated intensities of magnetic reflections calculated using an expectation value of each spin in a plateau ground state of an isolated-trimer model agree well with those obtained experimentally in the magnetization-plateau fields. We succeeded in direct observation of a plateau ground state in SrMn$_3$P$_4$O$_{14}$.

قيم البحث

اقرأ أيضاً

The magnetic ground state of polycrystalline Neel skyrmion hosting material GaV$_4$S$_8$ has been investigated using ac susceptibility and powder neutron diffraction. In the absence of an applied magnetic field GaV$_4$S$_8$ undergoes a transition fro m a paramagnetic to a cycloidal state below 13~K and then to a ferromagnetic-like state below 6~K. With evidence from ac susceptibility and powder neutron diffraction, we have identified the commensurate magnetic structure at 1.5 K, with ordered magnetic moments of $0.23(2)~mu_{mathrm{B}}$ on the V1 sites and $0.22(1)~mu_{mathrm{B}}$ on the V2 sites. These moments have ferromagnetic-like alignment but with a 39(8)$^{circ}$ canting of the magnetic moments on the V2 sites away from the V$_4$ cluster. In the incommensurate magnetic phase that exists between 6 and 13 K, we provide a thorough and careful analysis of the cycloidal magnetic structure exhibited by this material using powder neutron diffraction.
Magnetic susceptibility and the magnetization process have been measured in green polycrystal. In this compound, the magnetic manganese ion exists as Mn$^{5+}$ in a tetrahedral environment, and thus the magnetic interaction can be described by an S=1 Heisenberg model. The ground state was found to be a spin singlet with an excitation gap $Delta/k_{rm B}=11.2$ K. Magnetization plateaus were observed at zero and at half of the saturation magnetization. These results indicate that the present system can be represented by a coupled antiferromagnetic dimer model.
We report a combined $^{115}$In NQR, $^{51}$V NMR and $mu$SR spectroscopic study of the low-temperature magnetic properties of InCu$_{2/3}$V$_{1/3}$O$_3$, a quasi-two dimensional (2D) compound comprising in the spin sector a honeycomb lattice of anti ferromagnetically coupled spins $S=1/2$ associated with Cu$^{2+}$ ions. Despite substantial experimental and theoretical efforts, the ground state of this material was has not been ultimately identified. In particular, two characteristic temperatures of about $sim 40$ K and $sim 20$ K manifesting themselves as anomalies in different magnetic measurements are discussed controversially. A combined analysis of the experimental data complemented with theoretical calculations of exchange constants enabled us to identify below 39 K an ``intermediate quasi-2D static spin state. This spin state is characterized by a staggered magnetization with a temperature evolution that agrees with the predictions for the 2D XY model. We observe that this state gradually transforms at 15 K into a fully developed 3D antiferromagnetic Neel state. We ascribe such an extended quasi-2D static regime to an effective magnetic decoupling of the honeycomb planes due to a strong frustration of the interlayer exchange interactions which inhibits long-range spin-spin correlations across the planes. Interestingly, we find indications of the topological Berezinsky-Kosterlitz-Thouless transition in the quasi-2D static state of the honeycomb spin-1/2 planes of InCu$_{2/3}$V$_{1/3}$O$_3$.
The heavy fermion superconductor UPt$_3$ is thought to have odd-parity, a state for which the temperature dependence of the spin susceptibility is an important signature. In order to address conflicting reports from two different experiments, the NMR Knight shift and measurements of the anisotropy of the upper critical field, we have measured the bulk susceptibility in a high quality single crystal using polarized-neutron diffraction. A temperature independent susceptibility was observed for $H||a$ through the transitions between the normal state and the superconducting A-, B- and C-phases, consistent with odd-parity, spin-triplet superconductivity.
We report the first direct resonant soft x-ray scattering observations of orbital ordering. We have studied the low temperature phase of La$_{0.5}$Sr$_{1.5}$MnO$_4$, a compound that displays charge and orbital ordering. Previous claims of orbital ord ering in such materials have relied on observations at the Manganese $K$ edge. These claims have been questioned in several theoretical studies. Instead we have employed resonant soft x-ray scattering at the manganese $L_{III}$ and $L_{II}$ edges which probes the orbital ordering directly. Energy scans at constant wavevector are compared to theoretical predictions and suggest that at all temperatures there are two separate contributions to the scattering, direct orbital ordering and strong cooperative Jahn - Teller distortions of the Mn$^{3+}$ ions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا