ﻻ يوجد ملخص باللغة العربية
We report the first direct resonant soft x-ray scattering observations of orbital ordering. We have studied the low temperature phase of La$_{0.5}$Sr$_{1.5}$MnO$_4$, a compound that displays charge and orbital ordering. Previous claims of orbital ordering in such materials have relied on observations at the Manganese $K$ edge. These claims have been questioned in several theoretical studies. Instead we have employed resonant soft x-ray scattering at the manganese $L_{III}$ and $L_{II}$ edges which probes the orbital ordering directly. Energy scans at constant wavevector are compared to theoretical predictions and suggest that at all temperatures there are two separate contributions to the scattering, direct orbital ordering and strong cooperative Jahn - Teller distortions of the Mn$^{3+}$ ions.
We investigate the high temperature phase of layered manganites, and demonstrate that the charge-orbital phase transition without magnetic order in La$_{0.5}$Sr$_{1.5}$MnO$_4$ can be understood in terms of the density wave instability. The orbital or
The magnon dispersion in the charge, orbital and spin ordered phase in La(0.5)Sr(1.5)MnO(4) has been studied by means of inelastic neutron scattering. We find an excellent agreement with a magnetic interaction model basing on the CE-type superstructu
The magnetic correlations in the charge- and orbital-ordered manganite La(0.5)Sr(1.5)MnO(4) have been studied by elastic and inelastic neutron scattering techniques. Out of the well-defined CE-type magnetic structure with the corresponding magnons a
We studied the charge-orbital ordering in the superlattice of charge-ordered insulating Pr$_{0.5}$Ca$_{0.5}$MnO$_3$ and ferromagnetic metallic La$_{0.5}$Sr$_{0.5}$MnO$_3$ by resonant soft x-ray diffraction. A temperature-dependent incommensurability
We describe a strategy for using resonant soft x-ray scattering (RSXS) to study the electronic structure of transition metal oxide quantum wires. Using electron beam lithography and ion milling, we have produced periodic, patterned arrays of colossal