ﻻ يوجد ملخص باللغة العربية
The heavy fermion superconductor UPt$_3$ is thought to have odd-parity, a state for which the temperature dependence of the spin susceptibility is an important signature. In order to address conflicting reports from two different experiments, the NMR Knight shift and measurements of the anisotropy of the upper critical field, we have measured the bulk susceptibility in a high quality single crystal using polarized-neutron diffraction. A temperature independent susceptibility was observed for $H||a$ through the transitions between the normal state and the superconducting A-, B- and C-phases, consistent with odd-parity, spin-triplet superconductivity.
We use polarised neutron diffraction to study the induced magnetization density of near optimally doped Ba(Fe0.935Co0.065)2As2 (T_C=24 K) as a function of magnetic field (1<H<9 T) and temperature (2<T<300 K). The T-dependence of the induced moment in
Recent observations [A.~Pustogow et al. Nature 574, 72 (2019)] of a drop of the $^{17}$O nuclear magnetic resonance (NMR) Knight shift in the superconducting state of Sr$_2$RuO$_4$ challenged the popular picture of a chiral odd-parity paired state in
The field-orientation dependent thermal conductivity of the heavy-fermion superconductor UPt$_3$ was measured down to very low temperatures and under magnetic fields throughout three distinct superconducting phases: A, B, and C phases. In the C phase
The magnetic order of the localized Eu$^{2+}$ spins in optimally-doped Eu(Fe$_{1-x}$Ir$_{x}$)$_{2}$As$_{2}$ ($mathit{x}$ = 0.12) with superconducting transition temperature $mathit{T_{SC}}$ = 22 K was investigated by single-crystal neutron diffractio
Neutron Scattering measurements for YBa$_2$Cu$_3$O$_{6.6}$ have identified small magnetic moments that increase in strength as the temperature is reduced below $T^ast$ and further increase below $T_c$. An analysis of the data shows the moments are an