ﻻ يوجد ملخص باللغة العربية
Magnetic susceptibility and the magnetization process have been measured in green polycrystal. In this compound, the magnetic manganese ion exists as Mn$^{5+}$ in a tetrahedral environment, and thus the magnetic interaction can be described by an S=1 Heisenberg model. The ground state was found to be a spin singlet with an excitation gap $Delta/k_{rm B}=11.2$ K. Magnetization plateaus were observed at zero and at half of the saturation magnetization. These results indicate that the present system can be represented by a coupled antiferromagnetic dimer model.
Strong spin-orbit coupling (SOC) effects of heavy $d$-orbital elements have long been neglected in describing the ground states of their compounds thereby overlooking a variety of fascinating and yet unexplored magnetic and electronic states, until r
We have measured the specific heat of the coupled spin-dimer antiferromagnet Ba$_3$Mn$_2$O$_8$ to 50 mK in temperature and to 29 T in the magnetic field. The experiment extends to the midpoint of the field region (25.9 T $leq H leq$ 32.3 T) of the ma
We study the thermodynamic and high-magnetic-field properties of the magnetic insulator Ba$_5$CuIr$_3$O$_{12}$, which shows no magnetic order down to 2 K consistent with a spin liquid ground state. While the temperature dependence of the magnetic sus
In an ideal classical pyrochlore antiferromagnet without perturbations, an infinite degeneracy at a ground state leads to absence of a magnetic order and spin-glass transition. Here we present Na$_3$Mn(CO$_3$)$_2$Cl as a new candidate compound where
We study low energy excitations in the quantum breathing pyrochlore antiferromagnet Ba$_3$Yb$_2$Zn$_5$O$_{11}$ by combination of inelastic neutron scattering (INS) and thermodynamical properties measurements. The INS spectra are quantitatively explai