ﻻ يوجد ملخص باللغة العربية
Relativistic mean-field (RMF) models have been widely used in the study of many hadronic frameworks because of several important aspects not always present in nonrelativistic models, such as intrinsic Lorentz covariance, automatic inclusion of spin, appropriate saturation mechanism for nuclear matter, causality and, therefore, no problems related to superluminal speed of sound. With the aim of identifying the models which best satisfy well known properties of nuclear matter, we have analyzed $263$ parameterizations of seven different types of RMF models under three different sets of constraints related to symmetric nuclear matter, pure neutron matter, symmetry energy, and its derivatives. One of these (SET1) is formed of the same constraints used in a recent work [M. Dutra et al., Phys. Rev. C 85, 035201 (2012)] in which we analyzed $240$ Skyrme parameterizations. The results pointed to $2$ models consistent with all constraints. By using another set of constraints, namely, SET2a, formed by the updat
In this work, we study the arising of correlations among some isoscalar ($K_o$, $Q_o$, and $I_o$) and isovector ($J$, $L_o$, $K_{sym}^o$, $Q_{sym}^o$, and $I_{sym}^o$) bulk parameters in nonrelativistic and relativistic hadronic mean-field models. Fo
The liquid-gas phase transition in hot asymmetric nuclear matter is studied within density-dependent relativistic mean-field models where the density dependence is introduced according to the Brown-Rho scaling and constrained by available data at low
The halo factor is one of the experimental data which describes a distribution of neutrons in nuclear periphery. In the presented paper we use Skyrme-Hartree (SH) and the Relativistic Mean Field (RMF) models and we calculate the neutron excess factor
The Physical origin of the nuclear symmetry energy is studied within the relativistic mean field (RMF) theory. Based on the nuclear binding energies calculated with and without mean isovector potential for several isobaric chains we conform earlier S
We investigate an effective relativistic equation of state at finite values of temperature and baryon chemical potential with the inclusion of the full octet of baryons, the Delta-isobars and the lightest pseudoscalar and vector meson degrees of free