ترغب بنشر مسار تعليمي؟ اضغط هنا

Hadronic freeze-out in an effective relativistic mean field model

177   0   0.0 ( 0 )
 نشر من قبل Lavagno Andrea
 تاريخ النشر 2013
  مجال البحث
والبحث باللغة English
 تأليف A. Lavagno




اسأل ChatGPT حول البحث

We investigate an effective relativistic equation of state at finite values of temperature and baryon chemical potential with the inclusion of the full octet of baryons, the Delta-isobars and the lightest pseudoscalar and vector meson degrees of freedom. These last particles have been introduced within a phenomenological approach by taking into account of an effective chemical potential and mass depending on the self-consistent interaction between baryons. In this framework, we study of the hadron yield ratios measured in central heavy ion collisions over a broad energy range and present the beam energy dependence of underlying dynamic quantities like the net baryon density and the energy density.



قيم البحث

اقرأ أيضاً

A finite unbound system which is equilibrium in one reference frame is in general nonequilibrium in another frame. This is a consequence of the relative character of the time synchronization in the relativistic physics. This puzzle was a prime motiva tion of the Cooper--Frye approach to the freeze-out in relativistic hydrodynamics. Solution of the puzzle reveals that the Cooper--Frye recipe is far not a unique phenomenological method that meets requirements of energy-momentum conservation. Alternative freeze-out recipes are considered and discussed.
A new parameter set is generated for finite and infinite nuclear system within the effective field theory motivated relativistic mean field (ERMF) formalism. The isovector part of the ERMF model employed in the present study includes the coupling of nucleons to the {delta} and r{ho} mesons and the cross-coupling of r{ho} mesons to the {sigma} and {omega} mesons. The results for the finite and infinite nuclear systems obtained using our parameter set are in harmony with the available experimental data. We find the maximum mass of the neutron star to be 2.03Modot? and yet a relatively smaller radius at the canonical mass, 12.69 km, as required by the available data.
138 - D. Anchishkin 2012
The space-time structure of the multipion system created in central relativistic heavy-ion collisions is investigated. Using the microscopic transport model UrQMD we determine the freeze-out hypersurface from equation on pion density n(t,r)=n_c. It t urns out that for proper value of the critical energy density epsilon_c equation epsilon(t,r)=epsilon_c gives the same freeze-out hypersurface. It is shown that for big enough collision energies E_kin > 40A GeV/c (sqrt(s) > 8A GeV/c) the multipion system at a time moment {tau} ceases to be one connected unit but splits up into two separate spatial parts (drops), which move in opposite directions from one another with velocities which approach the speed of light with increase of collision energy. This time {tau} is approximately invariant of the collision energy, and the corresponding tau=const. hypersurface can serve as a benchmark for the freeze-out time or the transition time from the hydrostage in hybrid models. The properties of this hypersurface are discussed.
The measured particle ratios in central heavy-ion collisions at RHIC-BNL are investigated within a chemical and thermal equilibrium chiral SU(3) sigma-omega approach. The commonly adopted noninteracting gas calculations yield temperatures close to or above the critical temperature for the chiral phase transition, but without taking into account any interactions. Contrary, the chiral SU(3) model predicts temperature and density dependent effective hadron masses and effective chemical potentials in the medium and a transition to a chirally restored phase at high temperatures or chemical potentials. Three different parametrizations of the model, which show different types of phase transition behaviour, are investigated. We show that if a chiral phase transition occured in those collisions, freezing of the relative hadron abundances in the symmetric phase is excluded by the data. Therefore, either very rapid chemical equilibration must occur in the broken phase, or the measured hadron ratios are the outcome of the dynamical symmetry breaking. Furthermore, the extracted chemical freeze-out parameters differ considerably from those obtained in simple noninteracting gas calculations. In particular, the three models yield up to 35 MeV lower temperatures than the free gas approximation. The in-medium masses turn out differ up to 150 MeV from their vacuum values.
New effective $Lambda N$ interactions are proposed for the density dependent relativistic mean field model. The multidimensionally constrained relativistic mean field model is used to calculate ground state properties of eleven known $Lambda$ hypernu clei with $Age 12$ and the corresponding core nuclei. Based on effective $NN$ interactions DD-ME2 and PKDD, the ratios $R_sigma$ and $R_omega$ of scalar and vector coupling constants between $Lambda N$ and $NN$ interactions are determined by fitting calculated $Lambda$ separation energies to experimental values. We propose six new effective interactions for $Lambda$ hypernuclei: DD-ME2-Y1, DD-ME2-Y2, DD-ME2-Y3, PKDD-Y1, PKDD-Y2 and PKDD-Y3 with three ways of grouping and including these eleven hypernuclei in the fitting. It is found that the two ratios $R_sigma$ and $R_omega$ are correlated well and there holds a good linear relation between them. The statistical errors of the ratio parameters in these effective interactions are analyzed. These new effective interactions are used to study the equation of state of hypernuclear matter and neutron star properties with hyperons.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا