ترغب بنشر مسار تعليمي؟ اضغط هنا

Nuclear Periphery in Mean-Field Models

97   0   0.0 ( 0 )
 نشر من قبل Baran Dr.
 تاريخ النشر 2003
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The halo factor is one of the experimental data which describes a distribution of neutrons in nuclear periphery. In the presented paper we use Skyrme-Hartree (SH) and the Relativistic Mean Field (RMF) models and we calculate the neutron excess factor $Delta_B$ defined in the paper which differs slightly from halo factor $f_{rm exp}$. The results of the calculations are compared to the measured data.



قيم البحث

اقرأ أيضاً

Relativistic mean-field (RMF) models have been widely used in the study of many hadronic frameworks because of several important aspects not always present in nonrelativistic models, such as intrinsic Lorentz covariance, automatic inclusion of spin, appropriate saturation mechanism for nuclear matter, causality and, therefore, no problems related to superluminal speed of sound. With the aim of identifying the models which best satisfy well known properties of nuclear matter, we have analyzed $263$ parameterizations of seven different types of RMF models under three different sets of constraints related to symmetric nuclear matter, pure neutron matter, symmetry energy, and its derivatives. One of these (SET1) is formed of the same constraints used in a recent work [M. Dutra et al., Phys. Rev. C 85, 035201 (2012)] in which we analyzed $240$ Skyrme parameterizations. The results pointed to $2$ models consistent with all constraints. By using another set of constraints, namely, SET2a, formed by the updat
The Physical origin of the nuclear symmetry energy is studied within the relativistic mean field (RMF) theory. Based on the nuclear binding energies calculated with and without mean isovector potential for several isobaric chains we conform earlier S kyrme-Hartree-Fock result that the nuclear symmetry energy strength depends on the mean level spacing $epsilon (A)$ and an effective mean isovector potential strength $kappa (A)$. A detaied analysis of isospin dependence of the two components contributing to the nuclear symmetry energy reveals a quadratic dependence due to the mean-isoscalar potential, $simepsilon T^2$, and, completely unexpectedly, the presence of a strong linear component $simkappa T(T+1+epsilon/kappa)$ in the isovector potential. The latter generates a nuclear symmetry energy in RMF theory that is proportional to $E_{sym}sim T(T+1)$ at variance to the non-relativistic calculation. The origin of the linear term in RMF theory needs to be further explored.
We review recent results on intermediate mass cluster production in heavy ion collisions at Fermi energy and in spallation reactions. Our studies are based on modern transport theories, employing effective interactions for the nuclear mean-field and incorporating two-body correlations and fluctuations. Namely we will consider the Stochastic Mean Field (SMF) approach and the recently developed Boltzmann-Langevin One Body (BLOB) model. We focus on cluster production emerging from the possible occurrence of low-density mean-field instabilities in heavy ion reactions. Within such a framework, the respective role of one and two-body effects, in the two models considered, will be carefully analysed. We will discuss, in particular, fragment production in central and semi-peripheral heavy ion collisions, which is the object of many recent experimental investigations. Moreover, in the context of spallation reactions, we will show how thermal expansion may trigger the development of mean-field instabilities, leading to a cluster formation process which competes with important re-aggregation effects.
Perturbing fluids of neutrons and protons (nuclear matter) may lead, as the most catastrophic effect, to the rearrangement of the fluid into clusters of nucleons. A similar process may occur in a single atomic nucleus undergoing a violent perturbatio n, like in heavy-ion collisions tracked in particle accelerators at around 30 to 50 MeV per nucleon: in this conditions, after the initial collision shock, the nucleus expands and then clusterises into several smaller nuclear fragments. Microscopically, when violent perturbation are applied to nuclear matter, a process of clusterisation arises from the combination of several fluctuation modes of large-amplitude where neutrons and protons may oscillate in phase or out of phase. The imposed perturbation leads to conditions of instability, the wavelengths which are the most amplified have sizes comparable to small atomic nuclei. We found that these conditions, explored in heavy-ion collisions, correspond to the splitting of a nucleus into fragments ranging from Oxygen to Neon in a time interval shorter than one zeptosecond (10$^{-21}$s). From the out-of-phase oscillations of neutrons and protons another property arises, the smaller fragments belonging to a more volatile phase get more neutron enriched: in the heavy-ion collision case this process, called distillation, reflects in the isotopic distributions of the fragments. The resulting dynamical description of heavy-ion collisions is an improvement with respect to more usual statistical approaches, based on the equilibrium assumption. It allows in fact to characterise also the very fast early stages of the collision process which are out of equilibrium. Such dynamical description is the core of the Boltzmann-Langevin One Body (BLOB) model, which unifies in a common description fluctuations in nuclear matter and the disintegration of nuclei into nuclear fragments.
The liquid-gas phase transition in hot asymmetric nuclear matter is studied within density-dependent relativistic mean-field models where the density dependence is introduced according to the Brown-Rho scaling and constrained by available data at low densities and empirical properties of nuclear matter. The critical temperature of the liquid-gas phase transition is obtained to be 15.7 MeV in symmetric nuclear matter falling on the lower edge of the small experimental error bars. In hot asymmetric matter, the boundary of the phase-coexistence region is found to be sensitive to the density dependence of the symmetry energy. The critical pressure and the area of phase-coexistence region increases clearly with the softening of the symmetry energy. The critical temperature of hot asymmetric matter separating the gas phase from the LG coexistence phase is found to be higher for the softer symmetry energy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا