ﻻ يوجد ملخص باللغة العربية
The Physical origin of the nuclear symmetry energy is studied within the relativistic mean field (RMF) theory. Based on the nuclear binding energies calculated with and without mean isovector potential for several isobaric chains we conform earlier Skyrme-Hartree-Fock result that the nuclear symmetry energy strength depends on the mean level spacing $epsilon (A)$ and an effective mean isovector potential strength $kappa (A)$. A detaied analysis of isospin dependence of the two components contributing to the nuclear symmetry energy reveals a quadratic dependence due to the mean-isoscalar potential, $simepsilon T^2$, and, completely unexpectedly, the presence of a strong linear component $simkappa T(T+1+epsilon/kappa)$ in the isovector potential. The latter generates a nuclear symmetry energy in RMF theory that is proportional to $E_{sym}sim T(T+1)$ at variance to the non-relativistic calculation. The origin of the linear term in RMF theory needs to be further explored.
We investigate the relativistic mean field theory of nuclear matter at finite temperature and baryon density taking into account of nonlinear statistical effects, characterized by power-law quantum distributions. The analysis is performed by requirin
The nuclear symmetry energy represents a response to the neutron-proton asymmetry. In this survey we discuss various aspects of symmetry energy in the framework of nuclear density functional theory, considering both non-relativistic and relativistic
We calculate the binding energy of two $Lambda$ hyperons bound to a nuclear core within the relativistic mean field theory. The starting point is a two-body relativistic equation of the Breit type suggested by the RMFT, and corrected for the two-part
Relativistic mean-field (RMF) models have been widely used in the study of many hadronic frameworks because of several important aspects not always present in nonrelativistic models, such as intrinsic Lorentz covariance, automatic inclusion of spin,
In this paper, we compare the RMF theory and the model of deformed oscillator shells (DOS) in description of the quantum properties of the bound states of the spherically symmetric light nuclei. We obtain an explicit analytical relation between diffe