ترغب بنشر مسار تعليمي؟ اضغط هنا

Ultrathin Semiconductor Perfect Light Absorbers with High Spectral, Polarization, and Angle Selectivity for Arbitrary Wavelengths

54   0   0.0 ( 0 )
 نشر من قبل Lujun Huang
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Enabling perfect light absorption in ultrathin materials promises the development of exotic photonic devices. Here we demonstrate new strategies that can provide capabilities to rationally design ultrathin (thickness < {lambda}/10~{lambda}/5) semiconductor perfect absorbers for arbitrary wavelengths, including those at which the intrinsic absorption of the semiconductor is weak, e.g. Si for near-IR wavelengths. This is in stark contrast with the existing studies on ultrathin perfect absorbers, which have focused on metallic materials or highly-absorptive semiconductors. Our design strategies are built upon an intuitive model, coupled leaky mode theory that we recently developed and can turn the design for perfect absorbers to the design for leaky modes. The designed absorber is featured with extraordinary absorption enhancement, miniaturized dimension, and high selectivity for the wavelength, polarization, and angle of incident light. It can enable the development of flexible, light-weight, high-performance, cost-effective, and multifunctional optoelectronic devices that are difficult with current light absorbers.

قيم البحث

اقرأ أيضاً

241 - L. Mogg , S. Zhang , G.-P. Hao 2019
Defect-free monolayers of graphene and hexagonal boron nitride were previously shown to be surprisingly permeable to thermal protons, despite being completely impenetrable to all gases. It remains untested whether small ions can permeate through the two-dimensional crystals. Here we show that mechanically exfoliated graphene and hexagonal boron nitride exhibit perfect Nernst selectivity such that only protons can permeate through, with no detectable flow of counterions. In the experiments, we used suspended monolayers that had few if any atomic-scale defects, as shown by gas permeation tests, and placed them to separate reservoirs filled with hydrochloric acid solutions. Protons accounted for all the electrical current and chloride ions were blocked. This result corroborates the previous conclusion that thermal protons can pierce defect-free two-dimensional crystals. Besides importance for theoretical developments, our results are also of interest for research on various separation technologies based on two-dimensional materials.
We demonstrate a selectively emitting optical Fabry-Perot resonator based on a few-nm-thin continuous metallic titanium nitride film, separated by a dielectric spacer from an optically thick titanium nitride back-reflector, which exhibits excellent s tability at 1070 K against chemical degradation, thin-film instabilities and melting point depression. The structure paves the way to the design and fabrication of refractory thermal emitters using the well-established processes known from the field of multilayer and rugate optical filters. We demonstrate that a few-nanometer thick films of titanium nitride can be stable under operation at temperatures exceeding 1070 K. This type of selective emitter provides a means towards near-infrared thermal emission that could potentially be tailored to the accuracy level known from rugate optical filters.
80 - Zi-Lan Deng , Shuang Zhang , 2016
Recently, an achromatic metasurface was successfully demonstrated to deflect light of multiple wavelengths in the same direction and it was further applied to the design of planar lenses without chromatic aberrations [Science, 347, 1342(2015)]. Howev er, such metasurface can only work for normal incidence and exhibit low conversion efficiency. Here, we present an ultrawide-angle and high-efficiency metasurface without chromatic aberration for wavefront shaping in visible range. The metasurface is constructed by multiple metallic nano-groove gratings, which support enhanced diffractions for an ultrawide incident angle range from 10o to 80o due to the excitations of localized gap plasmon modes at different resonance wavelengths. Incident light at these resonance wavelengths can be efficiently diffracted into the same direction with complete suppression of the specular reflection. This approach is applied to the design of an achromatic flat lens for focusing light of different wavelengths into the same position. Our findings provide a facile way to design various achromatic flat optical elements for imaging and display applications.
We report the room-temperature electroluminescence (EL) with nearly pure circular polarization (CP) from GaAs-based spin-polarized light-emitting diodes (spin-LEDs). External magnetic fields are not used during device operation. There are two small s chemes in the tested spin-LEDs: firstly, the stripe-laser-like structure that helps intensifying the EL light at the cleaved side walls below the spin injector Fe slab, and secondly, the crystalline AlOx spin tunnel barrier that ensures electrically stable device operation. The purity of CP is depressively low in the low current density (J) region, whereas it increases steeply and reaches close to the pure CP when J = 100 A/cm2. There, either right- or left-handed CP component is significantly suppressed depending on the direction of magnetization of the spin injector. Spin-dependent re-absorption, spin-induced birefringence and optical spin-axis conversion are suggested to account for the observed experimental results.
We identify a new kind of physically realizable exceptional point (EP) corresponding to degenerate coherent perfect absorption, in which two purely incoming solutions of the wave operator for electromagnetic or acoustic waves coalesce to a single sta te. Such non-hermitian degeneracies can occur at a real-valued frequency without any associated noise or non-linearity, in contrast to EPs in lasers. The absorption lineshape for the eigenchannel near the EP is quartic in frequency around its maximum in any dimension. In general, for the parameters at which an operator EP occurs, the associated scattering matrix does not have an EP. However, in one dimension, when the $S$-matrix does have a perfectly absorbing EP, it takes on a universal one-parameter form with degenerate values for all scattering coefficients. For absorbing disk resonators, these EPs give rise to chiral absorption: perfect absorption for only one sense of rotation of the input wave.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا