ترغب بنشر مسار تعليمي؟ اضغط هنا

Wide-angle and high-efficiency achromatic metasurfaces for visible light

81   0   0.0 ( 0 )
 نشر من قبل Zi-Lan Deng
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Recently, an achromatic metasurface was successfully demonstrated to deflect light of multiple wavelengths in the same direction and it was further applied to the design of planar lenses without chromatic aberrations [Science, 347, 1342(2015)]. However, such metasurface can only work for normal incidence and exhibit low conversion efficiency. Here, we present an ultrawide-angle and high-efficiency metasurface without chromatic aberration for wavefront shaping in visible range. The metasurface is constructed by multiple metallic nano-groove gratings, which support enhanced diffractions for an ultrawide incident angle range from 10o to 80o due to the excitations of localized gap plasmon modes at different resonance wavelengths. Incident light at these resonance wavelengths can be efficiently diffracted into the same direction with complete suppression of the specular reflection. This approach is applied to the design of an achromatic flat lens for focusing light of different wavelengths into the same position. Our findings provide a facile way to design various achromatic flat optical elements for imaging and display applications.

قيم البحث

اقرأ أيضاً

Metasurface optics provide an ultra-thin alternative to conventional refractive lenses. A present challenge is in realizing metasurfaces that exhibit tunable optical properties and achromatic behavior across the visible spectrum. Here, we report the design, fabrication, and characterization of metasurface lenses (metalenses) that use asymmetric TiO2 nanostructures to induce a polarization-dependent optical response. By rotating the polarization of linearly-polarized input light, the focal length of a 40 micrometer-diameter metalens is tuned from 220-550 micrometers with nearly diffraction-limited performance. We show that imparting a wavelength-dependent polarization rotation on incident light enables achromatic focusing over a wide band of the visible spectrum, 483-620 nm. We use this property to demonstrate varifocal color imaging with white light from a halogen source. Tunable achromatic metalenses may be useful for applications in imaging and display.
Gradient metasurfaces have been extensively applied in recent years for enabling an unprecedented control of light beam over thin optical components. However, these metasurfaces suffer from low efficiency when it comes to bending light with large ang le and high fabrication demand when it requires fine discretion. In this work, we investigate the all-dielectric metagrating based on mie-type resonances interference, allowing extraordinary optical diffraction for beam steering with ultralarge angle. It is found that the coupling inside and among lattice of metagrating can tune the exciting state of electric and magnetic resonances including both fundamental dipoles and high-order multipoles, leading to ideal asymmetrical scattering pattern for redistributing the energy between the diffraction channels at will. The participation of quadrupole and hexapole not only significantly enhance the working efficiency, but also bring distinctive possibilities for wave manipulation which cannot be reached by dipoles. Utilizing a thin array of silicon rods, large-angle negative refraction and reflection are demonstrated with almost unity efficiency under both polarizations. Compared with conventional metasurfaces, such an all-dielectric mategrating has the merits of high flexibility, high efficiency and low fabrication demand. The strong coupling and prosperous interactions among multipoles may behave as a cornerstone for broad range of wavefront control and offer an effective solution for various on-chip optical wave control such as bending, focusing, filtering and sensing.
Janus monolayers have long been captivated as a popular notion for breaking in-plane and out-of-plane structural symmetry. Originated from chemistry and materials science, the concept of Janus functions have been recently extended to ultrathin metasu rfaces by arranging meta-atoms asymmetrically with respect to the propagation or polarization direction of the incident light. However, such metasurfaces are intrinsically static and the information they carry can be straightforwardly decrypted by scanning the incident light directions and polarization states once the devices are fabricated. In this Letter, we present a dynamic Janus metasurface scheme in the visible spectral region. In each super unit cell, three plasmonic pixels are categorized into two sets. One set contains a magnesium nanorod and a gold nanorod that are orthogonally oriented with respect to each other, working as counter pixels. The other set only contains a magnesium nanorod. The effective pixels on the Janus metasurface can be reversibly regulated by hydrogenation/dehydrogenation of the magnesium nanorods. Such dynamic controllability at visible frequencies allows for flat optical elements with novel functionalities including beam steering, bifocal lensing, holographic encryption, and dual optical function switching.
One of the important advantages of optical metasurfaces over conventional diffractive optical elements is their capability to efficiently deflect light by large angles. However, metasurfaces are conventionally designed using approaches that are optim al for small deflection angles and their performance for designing high numerical aperture devices is not well quantified. Here we introduce and apply a technique for the estimation of the efficiency of high numerical aperture metasurfaces. The technique is based on a particular coherent averaging of diffraction coefficients of periodic blazed gratings and can be used to compare the performance of different metasurface designs in implementing high numerical aperture devices. Unlike optimization-based methods that rely on full-wave simulations and are only practicable in designing small metasurfaces, the gradient averaging technique allows for the design of arbitrarily large metasurfaces. Using this technique, we identify an unconventional metasurface design and experimentally demonstrate a metalens with a numerical aperture of 0.78 and a measured focusing efficiency of 77%. The grating averaging is a versatile technique applicable to many types of gradient metasurfaces, thus enabling highly efficient metasurface components and systems.
Metasurfaces are ultrathin nanostructured surfaces that can allow arbitrary manipulation of light. Implementing dynamic tunability into their design could allow the optical functions of metasurfaces to be rapidly modified at will. The most pronounced and robust tunability of optical properties is provided by phase-change materials such as vanadium dioxide (VO2) and germanium antimony telluride (GST), but their implementations have been limited only to near-infrared wavelengths. Here, we demonstrate that VO2 nanoantennas with widely tunable Mie resonances can be utilized for designing tunable metasurfaces in the visible range. In contrast to the dielectric-metallic phase transition-induced tunability in previous demonstrations, we show that dielectric Mie resonances in VO2 nanoantennas offer remarkable scattering and extinction modulation depths (5-8 dB and 1-3 dB, respectively) for tunability in the visible. Moreover, these strong resonances are optically switchable using a continuous-wave laser. Our results establish VO2 nanostructures as low-loss building blocks of optically tunable metasurfaces.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا