ترغب بنشر مسار تعليمي؟ اضغط هنا

Finite-dimensional representations for a class of generalized intersection matrix Lie algebras

134   0   0.0 ( 0 )
 نشر من قبل Li-meng Xia
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we study a class of generalized intersection matrix Lie algebras $gim(M_n)$, and prove that its every finite-dimensional semi-simple quotient is of type $M(n,{bf a}, {bf c},{bf d})$. Particularly, any finite dimensional irreducible $gim(M_n)$ module must be an irreducible module of $M(n,{bf a}, {bf c},{bf d})$ and any finite dimensional irreducible $M(n,{bf a}, {bf c},{bf d})$ module must be an irreducible module of $gim(M_n)$.



قيم البحث

اقرأ أيضاً

In the article at hand, we sketch how, by utilizing nilpotency to its fullest extent (Engel, Super Engel) while using methods from the theory of universal enveloping algebras, a complete description of the indecomposable representations may be reache d. In practice, the combinatorics is still formidable, though. It turns out that the method applies to both a class of ordinary Lie algebras and to a similar class of Lie superalgebras. Besides some examples, due to the level of complexity we will only describe a few precise results. One of these is a complete classification of which ideals can occur in the enveloping algebra of the translation subgroup of the Poincare group. Equivalently, this determines all indecomposable representations with a single, 1-dimensional source. Another result is the construction of an infinite-dimensional family of inequivalent representations already in dimension 12. This is much lower than the 24-dimensional representations which were thought to be the lowest possible. The complexity increases considerably, though yet in a manageable fashion, in the supersymmetric setting. Besides a few examples, only a subclass of ideals of the enveloping algebra of the super Poincare algebra will be determined in the present article.
107 - Tao Zhang 2021
We introduce the conception of matched pairs of $(H, beta)$-Lie algebras, construct an $(H, beta)$-Lie algebra through them. We prove that the cocycle twist of a matched pair of $(H, beta)$-Lie algebras can also be matched.
For a Lie algebra ${mathcal L}$ with basis ${x_1,x_2,cdots,x_n}$, its associated characteristic polynomial $Q_{{mathcal L}}(z)$ is the determinant of the linear pencil $z_0I+z_1text{ad} x_1+cdots +z_ntext{ad} x_n.$ This paper shows that $Q_{mathcal L }$ is invariant under the automorphism group $text{Aut}({mathcal L}).$ The zero variety and factorization of $Q_{mathcal L}$ reflect the structure of ${mathcal L}$. In the case ${mathcal L}$ is solvable $Q_{mathcal L}$ is known to be a product of linear factors. This fact gives rise to the definition of spectral matrix and the Poincar{e} polynomial for solvable Lie algebras. Application is given to $1$-dimensional extensions of nilpotent Lie algebras.
161 - Robert McRae 2020
We find sufficient conditions for the construction of vertex algebraic intertwining operators, among generalized Verma modules for an affine Lie algebra $hat{mathfrak{g}}$, from $mathfrak{g}$-module homomorphisms. When $mathfrak{g}=mathfrak{sl}_2$, t hese results extend previous joint work with J. Yang, but the method used here is different. Here, we construct intertwining operators by solving Knizhnik-Zamolodchikov equations for three-point correlation functions associated to $hat{mathfrak{g}}$, and we identify obstructions to the construction arising from the possible non-existence of series solutions having a prescribed form.
152 - Sonia Natale 2014
We show that a Jordan-Holder theorem holds for appropriately defined composition series of finite dimensional Hopf algebras. This answers an open question of N. Andruskiewitsch. In the course of our proof we establish analogues of the Noether isomorp hism theorems of group theory for arbitrary Hopf algebras under certain faithful (co)flatness assumptions. As an application, we prove an analogue of Zassenhaus butterfly lemma for finite dimensional Hopf algebras. We then use these results to show that a Jordan-Holder theorem holds as well for lower and upper composition series, even though the factors of such series may be not simple as Hopf algebras.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا