ترغب بنشر مسار تعليمي؟ اضغط هنا

Jordan-Holder theorem for finite dimensional Hopf algebras

136   0   0.0 ( 0 )
 نشر من قبل Sonia Natale
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English
 تأليف Sonia Natale




اسأل ChatGPT حول البحث

We show that a Jordan-Holder theorem holds for appropriately defined composition series of finite dimensional Hopf algebras. This answers an open question of N. Andruskiewitsch. In the course of our proof we establish analogues of the Noether isomorphism theorems of group theory for arbitrary Hopf algebras under certain faithful (co)flatness assumptions. As an application, we prove an analogue of Zassenhaus butterfly lemma for finite dimensional Hopf algebras. We then use these results to show that a Jordan-Holder theorem holds as well for lower and upper composition series, even though the factors of such series may be not simple as Hopf algebras.



قيم البحث

اقرأ أيضاً

Let $W$ be a Coxeter group. The goal of the paper is to construct new Hopf algebras that contain Hecke algebras $H_{bf q}(W)$ as (left) coideal subalgebras. Our Hecke-Hopf algebras ${bf H}(W)$ have a number of applications. In particular they provide new solutions of quantum Yang-Baxter equation and lead to a construction of a new family of endo-functors of the category of $H_{bf q}(W)$-modules. Hecke-Hopf algebras for the symmetric group are related to Fomin-Kirillov algebras, for an arbitrary Coxeter group $W$ the Demazure part of ${bf H}(W)$ is being acted upon by generalized braided derivatives which generate the corresponding (generalized) Nichols algebra.
296 - D.-M. Lu , Q.-S. Wu , J.J. Zhang 2005
The left and right homological integrals are introduced for a large class of infinite dimensional Hopf algebras. Using the homological integrals we prove a version of Maschkes theorem for infinite dimensional Hopf algebras. The generalization of Masc hkes theorem and homological integrals are the keys to study noetherian regular Hopf algebras of Gelfand-Kirillov dimension one.
109 - P. Saracco 2015
The Structure Theorem for Hopf modules states that if a bialgebra $H$ is a Hopf algebra (i.e. it is endowed with a so-called antipode) then every Hopf module $M$ is of the form ${M}^{mathrm{co}{H}}otimes H$, where ${M}^{mathrm{co}{H}}$ denotes the sp ace of coinvariant elements in $M$. Actually, it has been shown that this result characterizes Hopf algebras: $H$ is a Hopf algebra if and only if every Hopf module $M$ can be decomposed in such a way. The main aim of this paper is to extend this characterization to the framework of quasi-bialgebras by introducing the notion of preantipode and by proving a Structure Theorem for quasi-Hopf bimodules. We will also establish the uniqueness of the preantipode and the closure of the family of quasi-bialgebras with preantipode under gauge transformation. Then, we will prove that every Hopf and quasi-Hopf algebra (i.e. a quasi-bialgebra with quasi-antipode) admits a preantipode and we will show how some previous results, as the Structure Theorem for Hopf modules, the Hausser-Nill theorem and the Bulacu-Caenepeel theorem for quasi-Hopf algebras, can be deduced from our Structure Theorem. Furthermore, we will investigate the relationship between the preantipode and the quasi-antipode and we will study a number of cases in which the two notions are equivalent: ordinary bialgebras endowed with trivial reassociator, commutative quasi-bialgebras, finite-dimensional quasi-bialgebras.
184 - Yi-Lin Cheng , Siu-Hung Ng 2010
In this paper, we prove that a non-semisimple Hopf algebra H of dimension 4p with p an odd prime over an algebraically closed field of characteristic zero is pointed provided H contains more than two group-like elements. In particular, we prove that non-semisimple Hopf algebras of dimensions 20, 28 and 44 are pointed or their duals are pointed, and this completes the classification of Hopf algebras in these dimensions.
Let H be a non-semisimple Hopf algebra of dimension 2p^2 over an algebraically closed field of characteristic zero, where p is an odd prime. We prove that H or H^* is pointed, which completes the classification for Hopf algebras of these dimensions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا