ترغب بنشر مسار تعليمي؟ اضغط هنا

Indecomposable finite-dimensional representations of a class of Lie algebras and Lie superalgebras

151   0   0.0 ( 0 )
 نشر من قبل Hans Plesner Jakobsen
 تاريخ النشر 2012
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In the article at hand, we sketch how, by utilizing nilpotency to its fullest extent (Engel, Super Engel) while using methods from the theory of universal enveloping algebras, a complete description of the indecomposable representations may be reached. In practice, the combinatorics is still formidable, though. It turns out that the method applies to both a class of ordinary Lie algebras and to a similar class of Lie superalgebras. Besides some examples, due to the level of complexity we will only describe a few precise results. One of these is a complete classification of which ideals can occur in the enveloping algebra of the translation subgroup of the Poincare group. Equivalently, this determines all indecomposable representations with a single, 1-dimensional source. Another result is the construction of an infinite-dimensional family of inequivalent representations already in dimension 12. This is much lower than the 24-dimensional representations which were thought to be the lowest possible. The complexity increases considerably, though yet in a manageable fashion, in the supersymmetric setting. Besides a few examples, only a subclass of ideals of the enveloping algebra of the super Poincare algebra will be determined in the present article.



قيم البحث

اقرأ أيضاً

Finite dimensional modular Lie superalgebras over algebraically closed fields with indecomposable Cartan matrices are classified under some technical, most probably inessential, hypotheses. If the Cartan matrix is invertible, the corresponding Lie su peralgebra is simple otherwise the quotient of the derived Lie superalgebra modulo center is simple (if its rank is greater than 1). Eleven new exceptional simple modular Lie superalgebras are discovered. Several features of classic notions, or notions themselves, are clarified or introduced, e.g., Cartan matrix, sever
The inverses of indecomposable Cartan matrices are computed for finite-dimensional Lie algebras and Lie superalgebras over fields of any characteristic, and for hyperbolic (almost affine) complex Lie (super)algebras. We discovered three yet inexplica ble new phenomena, of which (a) and (b) concern hyperbolic (almost affine) complex Lie (super)algebras, except for the 5 Lie superalgebras whose Cartan matrices have 0 on the main diagonal: (a) several of the inverses of Cartan matrices have all their elements negative (not just non-positive, as they should be according to an a priori characterization due to Zhang Hechun); (b) the 0s only occur on the main diagonals of the inverses; (c) the determinants of inequivalent Cartan matrices of the simple Lie (super)algebra may differ (in any characteristic). We interpret most of the results of Wei Yangjiang and Zou Yi Ming, Inverses of Cartan matrices of Lie algebras and Lie superalgebras, Linear Alg. Appl., 521 (2017) 283--298 as inverses of the Gram matrices of non-degenerate invariant symmetric bilinear forms on the (super)algebras considered, not of Cartan matrices, and give more adequate references. In particular, the inverses of Cartan matrices of simple Lie algebras were already published, starting with Dynkins paper in 1952, see also Table 2 in Springers book by Onishchik and Vinberg (1990).
163 - Dimitry Leites 2007
A way to construct (conjecturally all) simple finite dimensional modular Lie (super)algebras over algebraically closed fields of characteristic not 2 is offered. In characteristic 2, the method is supposed to give only simple Lie (super)algebras grad ed by integers and only some of the non-graded ones). The conjecture is backed up with the latest results computationally most difficult of which are obtained with the help of Grozmans software package SuperLie.
120 - Yun Gao , Li-meng Xia 2014
In this paper, we study a class of generalized intersection matrix Lie algebras $gim(M_n)$, and prove that its every finite-dimensional semi-simple quotient is of type $M(n,{bf a}, {bf c},{bf d})$. Particularly, any finite dimensional irreducible $gi m(M_n)$ module must be an irreducible module of $M(n,{bf a}, {bf c},{bf d})$ and any finite dimensional irreducible $M(n,{bf a}, {bf c},{bf d})$ module must be an irreducible module of $gim(M_n)$.
We prove that the tensor product of a simple and a finite dimensional $mathfrak{sl}_n$-module has finite type socle. This is applied to reduce classification of simple $mathfrak{q}(n)$-supermodules to that of simple $mathfrak{sl}_n$-modules. Rough st ructure of simple $mathfrak{q}(n)$-supermodules, considered as $mathfrak{sl}_n$-modules, is described in terms of the combinatorics of category $mathcal{O}$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا